
Content Providers
Steven R. Bagley



Data

• Android stores data

• In files (both internal and external 
storage)

• In Databases

• Local to the app



Sharing Data

• Useful to be able to share data across apps

• Allows for standard locations to store 
Contacts etc…

• But we don’t want to share access to files

• Android permits data to be shared by using 
ContentProviders

• How accessible (read and/or write) is up to 
the app



Content Providers

• Are part of an app

• And are code

• Means that the app has full control of how 
its data is presented

• And how it is modified

• Called from other apps (other processes)

• So needs to be thread-safe



Content Providers

• Either create a new one (by sub-classing 
ContentProvider)

• Or add your data to an existing 
ContentProvider

• Android has default providers for common 
data, such as contacts, video, images, music, 
etc… 



Content Provider Data Model

• ContentProviders enforce a specific data 
model

• Very similar to a relational database table

• Records are stored in rows, with each 
column providing different data fields

• Each record has a numeric id (in the field 
_ID) that uniquely identifies it



Accessing a ContentProvider

• Don’t instantiate a ContentProvider sub-
class directly

• Instead access is mediated through a 
ContentResolver

• This is passed a URI to the content 
provider we want (which begins 
content://)



Content URIs

• Format of the Content URI:
content://com.example.provider/trains/123

• content:// — Standard prefix

• com.example.provider — The authority
Identifies the ContentProvider, should be a 
fully-qualified classname to ensure 
uniqueness. Must match <provider> element 
@android:authority in manifest 



Content URIs

• Format of the Content URI:
content://com.example.provider/trains/123

• trains — path part
Identifies the specific data being requested 
can be zero or more segments long

• 123 — the ID of a specific record, if 
necessary 



Querying a Content Provider

• Either getContentResolver() and call 
query() method

• Or more simply use 
Activity.managedQuery() method

• This takes care of the query’s lifetime 
automatically

• Returned a Cursor object as with SQLite



Querying a Content Provider

• Cursor managedQuery (Uri uri, 
String[] projection, String selection, 
String[] selectionArgs, 
String sortOrder)

• query() and Activity.managedQuery() 
methods parameters similar to SQLite 
queries

• uri is the Uri to the content provider we 
want to query



Accessing Contacts

• Android provides the Contacts as 
ContentProvider

• Uri is defined as a constant:
ContactsContract.Contacts.CONTENT_URI

• Need to specify that our app has 
permission 
(android.permission.READ_CONTACTS) in 
manifest

Go access the contacts list from our SQLite program



Creating our own ContentProvider

• Create a system to store data (e.g. our 
student table)

• Subclass ContentProvider

• Declare the ContentProvider in the 
manifest

• Provide implementation…

• Must be thread-safe…

We’ll go through what we need -- then look at the Notepad sample to see how its done in 
practice



ContentProvider Impl

• Six abstract methods:

• query()

• insert()

• update()

• delete()

• getType()

• onCreate()



URI processing

• All these methods (except onCreate()) 
take Uri as the first parameter

• The object will need to parse it to some 
extent to know what to return, insert or 
update

• Android provides 
android.content.UriMatcher to simplify 
this



UriMatcher

• Matches a portion of a URI to an integer

• Can then switch easily on the integer to 
handle the data

• Create a new UriMatcher object — set all 
the template Uris and the integer they 
match too

• Then call match() on a Uri to get the int


