
PDF on the Fly

Version 1.0a24



ii

1.0  Introduction.............................................................................................................3

2.0 Building the PDF .....................................................................................................4
2.1  PDF Top Level Structure ....................................................................................................4

2.2  The Marking of the Page.....................................................................................................5

2.3  The Current Point and Paths ...............................................................................................8

2.4  Clipping ..............................................................................................................................9

2.5  User Units and Coordinate System...................................................................................10

2.6 Error Checking...................................................................................................................10

3.0  Sample Programs ..................................................................................................10
3.1  The Simplest PDF (The “Hello World!” Case).................................................................11

3.2  Two Pages .........................................................................................................................12

3.3  Repeated GMAs................................................................................................................14

3.4  Save and Restore the GMA Environment.........................................................................16

3.5  Line Samples.....................................................................................................................17

3.6  Bezier Curves....................................................................................................................22

3.7  Scaled and Boxed Text String...........................................................................................24

3.8  Circles and Circular Arcs..................................................................................................27

3.9  The Transformation Matrix...............................................................................................30

3.10  Clipping Path ....................................................................................................................32

3.11  Text as Clipping Path ........................................................................................................35

3.12  Text Blocks and Text Parameters......................................................................................36

3.13  Colorspaces.......................................................................................................................39

4.0  The Function Reference List.................................................................................42
4.1 “File” Methods...................................................................................................................42

4.2  “Graphic” Methods ...........................................................................................................44

5.0 Known Problems....................................................................................................58



Perl5
t For-
an be

y
W)

ogram
r to

aking
if the
WWW
igh

andom
d on a
undreds
ontain
essed

shed
and by
ionar-

ce to
 that

 with
es not
library
e con-

es it
ry text
 write
far, this
d page
ort
1.0  Introduction

This is documentation for the Portable Document Format Perl5 Library (PDF-PL), a 
Library designed to assist in writing Perl5 programs that create Portable Documen
mat (PDF) files as used by Adobe’s® Acrobat® products. The current distribution c
found at http://www.ep.cs.nott.ac.uk/pdf-pl/. For a complete specification of PDF seePor-
table Document Format Reference Manual by Tim Bienz and Richard Cohn, published b
Addison-Wesley Publishing Company. Also check Adobe’s World Wide Web (WW
site for possible updates via: www.adobe.com.

Of course, a simple way to generate PDF files is by using almost any application pr
and either printing through the print driver PDFWriter®, or by using the printer drive
make a PostScript® file and then use the Acrobat Distiller® to create the PDF file. M
a PDF file using a Perl5 program might be considered doing it the hard way, but 
results of a WWW query are most suitably expressed as a PDF file generated on a 
server, then this library provides one way to do it “on-the-fly” today. Hopefully more h
level techniques will be forthcoming.

PDF was designed as an electronic document format that allows fast and efficient r
access to any page of the document. For example, when a document is displaye
screen, the user desires fast access to any page even if the document consists of h
or even thousands of pages. PDF files are a little tricky to create because they c
“objects” that are addressed by their byte offset within the file and which can be acc
randomly, that is, without reading the file serially from front to back. This is accompli
using a set of (fixed format) object reference tables at the end of the PDF document 
packaging the entire document information into objects of various kinds: pages, dict
ies, text streams, resources, and more (see the above referenced PDF Manual).

The PDF-PL is a library of functions for the generation of a PDF file and should suffi
build an error free PDF file. The functions are all written in Perl5. Since it is intended
the PDF builder should use these functions within his own Perl5 program, familiarity
Perl5 is assumed. Familiarity with PDF is also assumed. The user of PDF-PL do
need to know all the details of generating a complete and correct PDF file as the 
handles most of that. However, the user will have to understand the details of “pag
tent” operators in PDF in order to put text and graphics onto the pages of the files.

This is a first version of this library and as such has limited function. Primarily it mak
easy to make multiple page documents containing text and line art. Some elementa
formatting features are provided by the library but for the most part the user has to
Perl5 code to handle the detailed placement of text and graphics on the page. So 
PDF-PL does not support image placement on pages or functions that go beyon
content like “links”, “bookmarks”, or “annotations.” Our informal plans call for supp
for these PDF features to be added in a future release of this PDF-PL.
September 12, 1996 3



ples,
 list of
ble
L pro-
y the
ams by
ge. A
ailable

dobe
e for

 be
ted and
ical

is one

mbered
itten to
in any
, cross
ritten
rma-

dy.

wing
2.0 Building the PDF

We will simply explain how to generate correct PDF files by using appropriate exam
simple ones first and then progressing to more complicated ones. Together with the
functions in theFunction Reference List given later in these notes, the user should be a
to learn how to generate correct, i.e., error free PDF files. Incorrect use of the PDF-P
vided functions may result in an erroneous PDF without the builder being informed b
PDF-PL of these errors. We recommend that the user test the results of Perl5 progr
attempting to view the PDF files with, for example, the Acrobat Reader or Exchan
typical user might have this document, the PDF manual and a Perl5 manual all av
on the desktop.

2.1  PDF Top Level Structure

The PDF file consists of four basic consecutive building blocks:

• The header
• The body: a collection of PDF objects
• The cross reference section
• The trailer

If a PDF has been modified (for example by generating annotations by using the A
Acrobat product) these four original blocks are followed by one or more triplets, on
each updating session. Each triplet consists of the following three building blocks:

• The updated body portion
• The updated cross reference section
• The updated trailer

Note that the original portion of a PDF file (the first four blocks) will never actually
changed. Only those sections which by the update have been modified are recrea
saved in the triplet blocks following the original blocks. This is another of the typ
properties of the PDF file.

The current version of these notes describes only building an original PDF file, that 
that has not been updated yet.

The body of a PDF file consists of a sequence of PDF objects. These objects are nu
by the internal routines as they are created, but the sequence in which they are wr
the output file need not be in ascending order of the numbers or, for that matter, 
order. The objects contain everything there is to know about the document. Header
reference section and trailer are constructed by the library routines internally and w
to the output file. For this construction process the library routines make use of info
tion collected during the time the user generates the content of the objects in the bo

Using PDF-PL, a user written Perl5 program for generating a PDF file has the follo
general form:
September 12, 1996 4



rl5 pro-
ritten

uild-

xt) on

 these

pping

 state
in any
Perl5
 been
ulting

case,

ction
ctions
e. posi-

 any-
to the

(say a
rmally

tput

a-
ned
• Open the output file
• Generate the pages and their content
• Close the output file

Since PDF files are accessed randomly by objects, as one of the later sample Pe
grams will illustrate, we can build the pages in any order. Generally the pages are w
to the file in the same order in which they are created by the Perl5 calls.

TheFunction Reference List later in these notes lists the functions the user needs for b
ing a simple PDF file. The functions are listed in alphabetical order.

2.2  The Marking of the Page

The purpose of page contents objects of a PDF file is to put marks (graphic or te
pages. This is done by suitable PDF-PL functions invoked between abeginGraphic and
endGraphic invocation. For lack of a better name we call the program area between
begin/end functions the graphic marking area orGMA. The PDF-PL library functions
match the basic marking operators of PDF and this document gives the simple ma
between the descriptions found in the PDF Manual and the appropriate Perl5 calls.

One significant difference should be noted. There is an optimization done for certain
setting calls and redundant ones may be ignored by the PDF-PL and will not result 
output in the PDF file. This could be quite confusing when the results of a particular 
call don’t show up in the file. This will have been because the results would have
redundant and leaving those operations out will not change the behavior of the res
PDF file. If the users would like to force the library to output the operators in any 
certain functions that begin with “force” rather than “set” can be used.

While in the GMA (i.e. between corresponding beginGraphic and endGraphic fun
invocations) the PDF builder invokes, on the one hand, environment changing fun
and, on the other hand, also uses functions which actually put marks on the page, i. 
tion text, draw lines and curves, etc. In theFunction Reference List a brief description is
given for all functions and their parameters are defined.

It must be noted here that invocation of a PDF-PL function never puts any marks
where on a page. The more correct phrasing is: it puts the appropriate information in
PDF so that whenever this portion of the PDF is rendered on an output medium 
screen or paper) the intended marking occurs. Throughout these notes we will info
use the shorthand wording“is printed,” “is drawn” or “is rendered”  instead of always
saying“appropriate information is put into the PDF so that when rendered on an ou
medium the intended effect is achieved.”

While in the GMA the PDF builder invokes both graphic and textenvironment setting
functions and the graphic and textmarking operations. However, the text marking oper
tions must occur while in the text marking area (TMA) of the program. A TMA is defi
as the area in the program starting with thebeginText function and ending with theend-
Text function. SincebeginText andendText must be invoked within a GMA, the TMA is
September 12, 1996 5



king
ng
nc-
gate
t

king,

ingle
duced
ilder

on the
r cur-
t ren-

f a new

valid at
a subarea of the GMA, i.e. entirely contained within it. It follows that graphic mar
function invocations must occur within the GMA but not within a TMA. Text marki
function invocations must occur only within a TMA. Graphic environment setting fu
tions must occur within the GMA. And they may also occur within a TMA (and propa
outside of it when the TMA ends by an endText invocation). The same is true for tex
environment setting functions.

Note that there are text marking functions in the PDF-PL which, in a matter of spea
contain an entire TMA within themselves. These are the text block printing functionstext-
BlockLeft , textBlockRight, textBlockCenter andtextBlockOffset.

Many of the PDF-PL functions are primitives, i.e., they are implementations of one s
PDF operator. But these text block functions (as well as a few a others to be intro
later) output a set of such primitive functions. When they are invoked, the PDF bu
must specify font name, font size and text leading as parameters. After their invocati
specified text parameters remain active just as they would if set within a TMA. Othe
rently still active text environment setting functions apply, of course, also to the tex
dered by the text block functions.

These are the defaults for the environmental graphic and text variables at the start o
GMA:

• dash pattern [0], i.e., solid line
• fill color black
• flatness 0, i.e., the device default
• font name UNDEFINED
• font size UNDEFINED
• line cap style 0, i.e., butt end
• line width 1 user unit
•  miter limit 10
• line join style 0, i.e., mitered
• stroke color black
• text character spacing 0
• text horizontal scale 100, i.e., 100%, no scaling
• text leading 0
• text rendering 0, i.e., fill the text with color
• text rise 0
• text word spacing 0

These are the defaults for the environmental graphic and text variables as they are 
the start of a new page:

• clipping path crop box
• crop box media box (page size)
• current point (0, 0), i.e., lower left page corner
September 12, 1996 6



 fill-
f an
 path.

func-
s the
r (indi-
DF.

plac-
on
tion is

 are

r line
 posi-

en or
The terms “fill color” and “stroke color” refer to the use of color for the operations of
ing an area and stroking (i.e., drawing) a line. Filling refers to the filling with color o
area encircled by a defined path. Stroking refers to drawing a line along a defined
Stroking is a term specifically defined for the PDF to mean drawing a line.

The following graphic and text related functions are grouped into graphic marking 
tions, text marking functions and environment changing functions. The list also show
corresponding operators as they are used in the PDF. Functions without an operato
cated by “--”) are unique to the PDF-PL and hence have no direct equivalent in the P

Graphic environment changing functions are:

• setColors --
• setDashPattern d
• setFlatness i
• setJoinStyle j
• setLineCapStyle J
• setLinewidth w
• setMiterLimit M

The corresponding force functions also belong into this list. They are obtained by re
ing the prefix “set” with the prefix “force.” All functions in the list have a force functi
which do exactly the same as the set functions except for the time when the func
actually put into the PDF stream object.

The text environment changing functions are:

• setCharSpace Tc
• setFont Tf
• setTextHorizScale Tz
• setTextLeading TL, TD
• setTextRender Tr
• setTextRise Ts
• setTextWordSpace Tw

Again there are corresponding “force” functions for each function in this list. They
obtained by replacing the prefix “set” with the prefix “force.”

Font and font size can also be changed by being specified as parameters of the beginText
function (see the function description in theFunction Reference List) and bysetFont.

Although the PDF-PL is not a formatter there are environment setting functions fo
spacing (leading), word spacing, character spacing and super/subscripting (rise with
tive or negative parameter value). The functionsetTextHorizScale sets a scale factor
which is horizontally applied to the text string before it is actually rendered on a scre
September 12, 1996 7



le,

y are

MA

ry.
 put-

nt is
es).   A
 valid

A.

idth,
eans

in the
printer. The functionsetTextRender specifies how text is to be rendered, for examp
filled with color, stroked only, or stroked and filled, etc.

Functions for graphically marking the page while in the GMA are not listed here. The
introduced in the next section,The Current Point and Paths.

Functions for marking the page with text while in the TMA are:

• textCenter
• textLeft
• textRight

The text block functions also mark the page with text but they are invoked within a G
(remember, you can look at it as if they carry their own TMAs with them).

• textBlockCenter
• textBlockLeft
• textBlockOffset
• textBlockRight

One might considerendText to be another function which belongs into this catego
Although it in itself is not contributing to marking the page, it gives rise to the actual
ting of text into the output file by the PDF-PL internal routines.

2.3  The Current Point and Paths

In the GMA one of the environment variables is the “current point.” The current poi
used to define a path. A path is a sequence of line segments (straight or Bezier curv
path can be stroked (i.e. drawn), filled (when closed) or both. The current point is
only outside a TMA, since graphic marking functions may not be invoked inside a TM

The kind of stroking is determined by the setting of the environment variables: line w
dash pattern, miter limit, line cap style, line join style and stroke color. Stroking m
drawing a line along the path, such that the line is centered on the path.

A path is defined by using the current point changing functions (the letters are aga
corresponding PDF operator codes):

• closepath h
• curveto c
• endpath n
• lineto l
• moveto m
• rectangle re
• vCurveto v
• yCurveto y
September 12, 1996 8



e cur-

oint

-

. The

 as a
as it

-

scus-

 one or

r both,
lled/

ich is
lipping
ing is
Nothing is committed yet to the PDF file when they are invoked.

The functionmoveto moves the current point. The functions lineto, curveto, vCurveto
andyCurveto append new Bezier curves (segments) to the current path, and leave th
rent point at the end of the last segment.   The functionrectangle adds a rectangle to the
current path andclosepath ends a path by appending a straight line from the current p
to the beginning of the path. The functionendpath just ends a path without closing it.

These are the path committing functions:

• closepathFillStroke b
• evenOddFill f*
• evenOddFillStroke B*
• fill f
• fillStroke B
• stroke S

Now the defined path is committed to the PDF file, either as a filled path (by thefill  or
evenOddFill functions), as a stroked path only (by the stroke function) or as both filled
and stroked (by thefillStroke  or evenOddFillStroke functions). Note that theclosepath-
FillStroke  function does the same as thefillStroke  function except it is preceded by clos
ing the path as if theclosepath function were called first.

The occurrence of any of the stroking and/or filling operators “consumes” the path
path ceases to live. The only exception is the existence of a clipping function (clip or
eoclip) in the path definition. Even if the path has been consumed its ability to act
clipping path lives on. This ability disappears only by restoring an environment 
existed before the clipping path was defined (see thesave andrestore functions in the sec-
tion The Function Reference List).

Note that thefill , fillStroke  andclosepathFillStroke functions fill the path using the non
zero winding rule to determine which region to fill.EvenOddFill andevenOddFillStroke
fill the path using the even-odd rule to determine the filling region. For a detailed di
sion of these rules see the sectionPath Painting Operators in the PDF Manual.

2.4  Clipping

In the PDF it is possible to specify more than one separate paths and designate
more of them to be clipping paths.

When a clipping path has been defined and another path is to be filled or stroked o
then only the intersection of clipping path and the fill/stroke path are actually fi
stroked. For an sample program see the sectionClipping Path.

The default clipping path on a page is the crop box (or its default, the media box, wh
the page size). Hence nothing need be done by the PDF builder as long as no c
effects are desired. In fact, this is the most desirable situation. The operation of clipp
September 12, 1996 9



g path
of the
e and
storing

, the
eters
ths by

s, for
 to be

o one
r cor-
hange

rtic-
n and
ve

rma-
 user

of user
 PDF

F-PL.
 directly
exam-
ed an

idental
an expensive one. Therefore it is advisable always to deactivate an existing clippin
once it is no longer needed. Even if the current clipping path does not effect any 
paths currently to be filled its mere existence costs. It is good programming practic
economic use of the available resources to use available environment saving and re
functions for saving and restoring the clipping path (forgsave andgrestore see the section
The Reference Function List).

A second definition of a clipping path is given by a string of text, or more precisely
outlines of the characters comprising the string of text. Current font and size param
etc., of course, apply. The characters of text strings are marked to act as clipping pa
thesetTextRender function. For a sample program see the sectionText as Clipping Path.

2.5  User Units and Coordinate System

Almost all parameters used in the functions of the PDF-PL specify linear dimension
example, coordinates of a point on the page or width of lines to be drawn. They are
specified in user units. A user unit is 1/72nd of an inch which is very closely equal t
printer’s point. The origin of the user coordinate system on the page is the left lowe
ner. In the PDF user units are the default units. The actual length of a user unit may c
by transformations of the coordinate system.

By using thectm function it is possible to transform the coordinate system to suit a pa
ular application. Possible transformations are the operations of translation, rotatio
scaling. After executing actm function, the length of a unit in either x or y may ha
changed. The directions into which x and y point might have also.

In other words, if a PDF-PL function is invoked after some coordinate system transfo
tion, which includes scaling in x-direction by a factor of 2, then a specified length of 3
units will on the page appear as a length of 6 points.

2.6 Error Checking

Error checking of user supplied data (parameters) as well as correct sequencing 
supplied invocations of the PDF-PL functions is not guaranteed. In particular, the
builder is responsible that the effect of positioning functions, as, for example,moveto and
lineto, do not exceed the dimensions of the page.

3.0  Sample Programs

In this section sample programs will demonstrate the use of the functions of the PD
The functions have all been tested and the code was inserted here into these notes
from the test library. However, adjustments had to be made to the program text, for 
ple, the name of the PDF-PL library was changed to a generic indicator after we us
explicit name necessary to test the programs in our environment. Therefore acc
errors cannot be ruled out.
September 12, 1996 10



ns in

ram-
r gen-
 in 24
g one

t used
f this

Perl5.
rogram
ble.
Note that these sample programs also explicitly augment the definition of the functio
The Function Reference List.  They are a vital part of this documentation.

3.1  The Simplest PDF (The “Hello World!” Case)

Traditionally, generating a salutation to the world is the start for learning a new prog
ming language or, as the case is here, beginning to use a new library of functions fo
erating documents. Here is a simple Perl5 program printing these classical words
point Helvetica Bold on a default size page six inches up from the bottom and startin
inch over from the left edge.

##### Test t1.pl  --  Hello World!  ########################
BEGIN {
    $PDF_LIB = $ENV{“$PDF_LIB”};
    unshift (@INC, $PDF_LIB);
}

use Pdf::File;                 ##### USE lines
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();    ##### OPEN FILE lines
$pdf->pdfOpen (’./t1.pdf’);

$pdf->newPage ();              ##### Page line

$g = $pdf->beginGraphic ();    ##### BEGIN GRAPHIC line

                               ##### TEXT lines
$g->beginText (’Helvetica-Bold’, 24);
$g->textLeft (72, 432, “t1.pl:  Hello World!”);
$g->endText ();

$g->endGraphic ();             ##### END GRAPHIC line

$pdf->pdfClose ();             ##### CLOSE FILE line
#####################  E N D  ##############################

Note that in this and all following sample programs there is an empty parameter lis
for all invocations of subroutines which do not require parameters. Use is made o
Perl5 option in order to improve readability of the program text.

The first executable line in the t1.pl sample program is a compile time statement of 
If the Pdf library is not installed in a standard search place, these lines cause the p
to look for the Pdf directory in the directory given by the PDF_LIB environment varia
September 12, 1996 11



ing to
ectory
ains

 to
 output

such

is
utting

he

e are
neous
used

he vari-
y
“file”
tate

ix of
TheUSE lines are a notification to the Perl5 interpreter about which packages are go
be needed and in which directory they can be found. In other words, the PDF-PL dir
specified in theBEGIN  statement contains a directory named Pdf, which in turn cont
the PDF-PL module Files, Font and Graphic.

In the first of theOPEN FILE  lines a local Perl5 variable ($pdf) containing a reference
a new File object is defined. In the second line $pdf is used to open a user specified
file.

In thePAGE line a new page (here the first) of the output PDF file is started. One 
function invocation is required for each new page.

With the BEGIN GRAPHIC  line begins a new GMA. A reference to the new GMA 
returned and saved since it is now needed to qualify the functions to be used for p
marks on the page.

TheTEXT  lines define a TMA within which one line of left adjusted text is put out. T
beginText function also provides specification of font name and font size.

TheEND GRAPHIC  line ends the GMA.

The last line closes the output file.

It should be noted that the functions invoking the end of the GMA and the end of fil
required. No PDF-PL diagnostics will indicate their absence yet the generated erro
PDF will not be processed by Acrobat. In fact, running under Windows Acrobat ca
Windows to stall.

Note: There are two Perl5 objects used in this program sequence represented by t
ables named $pdf and $g. The “page” created bynewPage and the output file created b
pdfOpen are not materialized as Perl5 objects in the example but reside within the 
Perl5 object. Similarly, thebeginText does not make a Perl5 object but begins a text s
within the graphic object $g. In these notes we call this text state a TMA.

3.2  Two Pages

In the second sample program we will generate a PDF file with two pages and a m
graphic and text content.

##### Test t2.pl  --  Two Pages  ###########################
BEGIN {
     $PDF_LIB = $ENV{"$PDF_LIB"};
     unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;
September 12, 1996 12



my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t2.pdf’);

$pdf->newPage ();            ##### start of first page

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 18);
$g->textLeft (72, 650,
    “t2.pl:  On this page text and graphics are drawn using the”);
$g->textRight (540, 610,
    “default environment (except for font and fontsize)!”);
$g->endText ();

&strokeLine (120, 200, 370, 450);
&strokeLine (120, 250, 370, 500);

$g->rectangle (400, 300, 100, 100);
$g->fill ();

$g->endGraphic ();

$pdf->newPage ();            ##### start of second page

$g = $pdf->beginGraphic ();

$g->setColors (’f’, ’red’);

$g->beginText (’Helvetica-Bold’, 24);
$g->textLeft (120, 600, “t2.pl: Second Page!  The Fun starts!”);
$g->endText ();

$g->setLinewidth (5);
$g->setColors (’s’, ’blue’);
$g->setColors (’f’, ’yellow’);
$g->rectangle (250, 400, 100, 100);
$g->fillStroke ();

$g->setColors (’s’, ’green’);
&strokeLine (245, 200, 295, 275);

$g->setColors (’s’, ’darkblue’);
&strokeLine (305, 275, 355, 200);

$g->setColors (’s’, ’red’);
&strokeLine (247, 192, 353, 192);
September 12, 1996 13



eady

TMA
inch
tioned

 the
: The
ine on
s:  The

t the
rectan-

ed) is
ol-

roking
are is
line

atedly.
es of a
$g->endGraphic ();

$pdf->pdfClose ();

sub strokeLine {
       $g->moveto ($_[0], $_[1]);
       $g->lineto ($_[2], $_[3]);
       $g->stroke ();
}
#####################  E N D  ##############################

Only those features of PDF-PL functions will now be described which were not alr
mentioned in the previous example.

In the sample program t2.pl more than one line of text is generated within the first 
(beginText (‘Helvetica-Bold’, 18). Note that the first line is left adjusted, starting one 
to the right of the page edge. The second line is right adjusted. Its right end is posi
one inch to the left of the right edge of the page.

The drawing parameters default to those initially valid when a new GMA is started.

The lines following the TMA (two strokeLine lines) generate two straight lines having
default width of one user unit and drawn with the default stroke color of black. Note
strokeLine function is an internal subroutine to this sample porgram.  It produces a l
a page by executing the PDF operators moveto, lineto and stroke.  Consequence
current path is undefined i.e. consumed after strokeLine is executed.

The next two lines generate a square filled with the default fill color black. Note tha
square is only a consequence of the proper choice of the two defining points of the 
gular box.

On the second page of the PDF after beginning the GMA a new current color (r
defined for all filling (‘f’) operations. Filling includes the coloring of text. Hence the f
lowing text line is drawn in red.

Next the line width used by the drawing routines is set to five user units. Then the st
color is set to blue and the filling color changed to yellow. Then a two colored squ
drawn. It is to be stroked (‘s’) and filled (‘f’). Hence its five user units wide out
appears in blue and its interior is filled with yellow.

The last figure consists of three differently colored lines.

3.3  Repeated GMAs

In the sample program t3.pl we want to show how the same GMA can be used repe
As an example we want to generate the same heading and footing text on all pag
September 12, 1996 14



es, the
document. Then we use additional functions to generate the variable text on the pag
page numbers.

##### Test t3.pl  --  Repeated GMAs  #######################
BEGIN {
     $PDF_LIB = $ENV{"$PDF_LIB"};
     unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new(1);
$pdf->pdfOpen (’./t3.pdf’);

$pdf->newPage (3);            ##### init. of third page
$pdf->newPage (1);            ##### init. of first page
$pdf->newPage (2);            ##### init. of second page

$g = $pdf->beginGraphic (1);  ##### goes to page 1

$xc = 4.25 * 72;
$yc = 10 * 72;

$g->beginText (’Helvetica’, 18);
$g->textCenter ($xc, $yc, “t3.pl:  Sample H e a d i n g”);

$yc = 72;

$g->textCenter ($xc, $yc, “Sample F o o t i n g”);
$g->endText ();

$g->endGraphic ();

$g->addGraphic (2);          ##### now added to page 2
$g->addGraphic (3);          ##### now added to page 3

foreach $pn (1, 2, 3) {      ##### add the page numbers
$g = $pdf->beginGraphic ($pn);
$g->beginText (’Times-Roman’, 18);
$g->textCenter ($xc, 36, $pn);
$g->endText ();
$g->endGraphic ();

}

$pdf->pdfClose ();
September 12, 1996 15



these
 all the
ecified

 pass
e 1.

ecently

ly,
 to the

foreach
n and
#####################  E N D  ##############################

In the sample program t3.pl we first start three pages by three repeatednewPage function
invocations. Just for demonstration we use explicit page numbers and initialize 
pages not even in sequence. Between these page functions we would ordinarily find
content generating functions for the current page. If the page numbers were not sp
the pages would be automatically numbered sequentially starting with 1.

Then text strings for heading and footing of a page are generated within a GMA. We
the parameter 1 to thebeginGraphic function. This attaches the generated text to pag
In the previous sample programs we used thebeginGraphic function always without a
parameter. Then the contents generated were automatically attached to the most r
initialized page.

Now we use two furtheraddGraphic functions with page numbers 1 and 2 respective
as parameters for attaching the same text strings (the most recently ended GMA)
specified pages.

We now want to print the page numbers correctly on each of the pages. We use a 
statement for the loop. Within each pass through the loop another GMA is begu
ended. By using the page number as parameter on thebeginGraphic function the gener-
ated content is attached to the correct page.

3.4  Save and Restore the GMA Environment

In the sample program t4.pl we show the usage of thegsave andgrestore functions.

##### Test t4.pl  --  Save/Restore Environment  ############
BEGIN {
      $PDF_LIB = $ENV{"$PDF_LIB"};
      unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t4.pdf’);

$pdf->newPage ();            ##### init. page

$g = $pdf->beginGraphic ();

$x = 1.5 * 72;
$y = 9 * 72;
September 12, 1996 16



raphic
st line
e 24

on-
lor and

age is
s. On
tterns,
$g->beginText (’Helvetica’, 12);
$g->setColors (’f’, ’red’);
$g->textLeft ($x, $y, “t4.pl:  First Environment (Helv. 12pt,

red)”);
$g->endText ();

$g->gsave ();

$y -= 50;

$g->beginText (’Times-Roman’, 24);
$g->setColors (’f’, ’blue’);
$g->textLeft ($x, $y, “Second Environment (Times 24pt, blue)”);
$g->endText ();

$y -= 50;

$g->grestore ();

$g->beginText ();
$g->textLeft ($x, $y, “First Environment again”);
$g->endText ();

$g->endGraphic ();

$pdf->pdfClose ();
#####################  E N D  ##############################

In the t4.pl sample program we demonstrate saving and restoring of the text and g
environment. In each of three successive TMAs a line of text is generated. For the fir
18 point Helvetica and red fill color was chosen. The second line is printed in blu
point Times-Roman. After the first TMA the environment has been saved (gsave). After
completing the second text environment the first environment is restored again (grestore).
Then a third text line is printed but without setting font or color. As the example dem
strates the environment has been saved and the third line appears again in the co
font of the first line.

3.5  Line Samples

In this example different line samples are demonstrated. Also the size of the p
changed from the default size (which is 8 and a half by 11 inches) to 6 by 8 inche
each of the four pages another property of lines is demonstrated: line width, dash pa
line cap styles and miter styles.

##### t5.pl  --  Line Samples on smaller page size  ########
BEGIN {
     $PDF_LIB = $ENV{"$PDF_LIB"};
September 12, 1996 17



     unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t5.pdf’);

                           ##### change of default page size
$w = 6 * 72;
$h = 8 * 72;
$pdf->setPageSize ($w, $h);

$pdf->newPage ();          ##### start of first page: varying lines

$g = $pdf->beginGraphic ();

$x = 120;
$y = 470;

$g->beginText (’Helvetica-Bold’, 18);
$g->textLeft ($x, $y, ’t5.pl:  Line Width examples’);
$g->endText ();

$x += 35;
$y -= 55;
$ll = 100;
$ld = 50;
$td = 115;
@lwa = (’1’, ’3’, ’5’, ’10’, ’15’, ’20’, ’25’);

foreach $lw (@lwa) {
$g->setLinewidth (0+$lw);
strokeLine ($x, $y, $x+$ll, $y);

$g->beginText (12);
$g->textLeft ($x+$td, $y-5, $lw);
$g->endText ();

$y -= $ld;
}

$g->endGraphic ();

$pdf->newPage ();          ##### start new page: dash patterns
September 12, 1996 18



$g = $pdf->beginGraphic ();

$y = 470;
$x = 120;

$g->beginText (’Helvetica-Bold’, 18);
$g->textLeft ($x, $y, ’t5.pl:  Dashed Line Examples’);
$g->endText ();

$x -= 5;
$y -= 55;
$ll = 200;
$lw = 4;
$ld = 50;
$td = 215;

$g->setLinewidth ($lw);

@da = ( [4], [4], [4, 2], [3, 5], [2, 3], [6, 3, 2, 3]);
@pa = (0, 4, 0, 3, 0, 9);

foreach $i (0..5) {
@a = @{$da[$i]};
$p = $pa[$i];
$g->setDashPattern (\@a, $p);
strokeLine ($x, $y, $x+$ll, $y);

$g->beginText (12);
$g->textLeft ($x+$td, $y-$lw/2, $p);
$g->endText ();

$y -= $ld;
};

$g->endGraphic ();

$pdf->newPage ();          ##### start new page: line cap styles

$g = $pdf->beginGraphic ();

$y = 470;
$x = 120;

$g->beginText (’Helvetica-Bold’, 18);
$g->textLeft ($x, $y-5, ’t5.pl:  Line Cap Examples’);
$g->endText ();
September 12, 1996 19



$x += 35;
$y -= 55;
$ll = 100;
$ld = 75;
$td = 115;

$g->setLinewidth (15);

foreach $cap (0, 1, 2) {
$g->setLineCapStyle ($cap);
strokeLine ($x, $y, $x+$ll, $y);

$g->beginText (12);
$g->textLeft ($x+$td, $y-5, $cap);
$g->endText ();

$y -= $ld;
};

$g->endGraphic ();

$pdf->newPage ();          ##### start new page: miter styles

$g = $pdf->beginGraphic ();

$x = $w/2;
$y = $h - 60;

$g->beginText (’Helvetica-Bold’, 18);
$g->textCenter ($x, $y, ’t5.pl:  Miter Style Examples’);
$g->endText ();

$y -= 150;
$w = 50;
$h = 100;
$x -= $w;
$ld = 150;
$td = 150;

$g->setLinewidth (15);

foreach $m (0, 1, 2) {

$g->setJoinStyle ($m);
$g->moveto ($x, $y);
$g->lineto ($x+$w, $y+$h);
September 12, 1996 20



anged

 within
f

 long
ccur-
old
y

m the
 shows
a) in

 Perl5

e usage
n

$g->lineto ($x+2*$w, $y);
$g->stroke ();

$g->beginText (12);
$g->textLeft ($x+$td, $y+$h/2, $m);
$g->endText ();

$y -= $ld;
};

$g->endGraphic ();

$pdf->pdfClose ();

sub  strokeLine  {
        $g->moveto ($_[0], $_[1]);
        $g->lineto ($_[2], $_[3]);

$g->stroke ();
}
#####################  E N D  ##############################

Before anything is done in the fifth sample program, t5.pl, the default page size is ch
to six inches in width and 8 inches in height using thesetPageSize function.

Text font name and font size must be defined before any text can be put on the page
a new GMA. This is done with thebeginText function at the beginning of the first TMA o
this page.

Within a GMA, once defined, the font parameters propagate into each new TMA as
as it is contained within the same GMA. Hence in our sample program only the first o
rence of abeginText function within a GMA shows two parameters: here Helvetica-B
and 18 points. Repeated use of abeginText function within the same GMA shows onl
the changed parameter: here 12 points.

For Perl5 novices: here is a common trick to overcome problems often arising fro
easy (and therefore often careless) use of different data types in Perl5. The program
$lw to be of string type because of the string assignment from the string array (@lw
the foreach statement. So it is used and needed in thetextLeft  function of the fourth state-
ment in the loop body. In the first loop statement, however,setLinewidth calls for a
numerical parameter. If we used $lw only, thesetLinewidth function answers with an
error message, saying that it expects a number and not a string. Using 0+$lw lets
convert the string into a number without changing its value and thesetLinewidth routine
is happy.

The dashed line example on the second page shall serve to explain the details of th
of the two parameters of thesetDashPattern function. The first parameter must be a
array (actually the reference to an array, denoted here by the reverse slash, ‘\’).
September 12, 1996 21



nition
lement
hes and
except

ashes
h pat-

 three
itself.
ap has

e pat-

ith the
u see
 starts
ttern as
u see

entical
correct
second

tion.

es in
ctions
g
he

ment
efault

gener-
For the first line the array consists only of one element: the number four. In the defi
of the array of arrays, @pa, just before the foreach loop, the first element is a one-e
array). The single element means that the dashed line consists of equal long das
gaps, each of them being four user units long. The second line is similar to the first 
that the line does not start with a dash but with a gap (see below).

The third element of the @da array is an array with two elements: [4, 2]. Now, the d
are four user units long and the gaps two. The fourth and fifth lines have similar das
terns, only the lengths are different.

The sixth array, [6, 3, 2, 3], defines a dash pattern of a six unit dash, followed by a
unit gap, followed by a two unit dash, followed by a three unit gap, before it repeats 
As you might guess: an odd number of elements defines a pattern where the last g
the same length as the last defined dash.

It remains to explain the second parameter, also called phase, of thesetDashPattern func-
tion. This parameter is a length value measured in user units. It defines where in th
tern the drawing shall be started, before the repetition sets in.

In the first line the phase is zero. The pattern starts at the beginning of the path w
dash defined by the first element of the defining array: four user units long. Now yo
the difference between the first and the second lines. In the first line the drawing
with the dash, in the second line the pattern starts as far advanced in the defined pa
the phase specifies, here exactly with a gap. (NOTE: This is probably not what yo
when you try this example.  You have run across an Acrobat bug. You see the line id
to the first one, i.e. as if the phase were not 4 but 0.  But the PDF-PL generates a 
PDF operator and parameters.) The last line with a phase of nine starts with the 
dash in the pattern, a dash with a length of two user units.

The third page shows nothing new, but serves to demonstrate the line cap style func

On the fourth page we use the defining of a path for the first time. We draw two lin
each loop and demonstrate the available styles of joining them. There are three fun
defining the path:moveto followed by twolineto functions. This defines a path startin
with the parameter point of themoveto function and ends with the parameter point of t
secondlineto function. It ends simply by thestroke function which actually does the
drawing (stroking) of the path according to the current environment. This environ
consists mostly of the defaults: 15 user units line with, default cap style (butt end), d
join style mitered), default dash pattern (solid line) and default color (black).

3.6  Bezier Curves

In the sample program t6.pl we demonstrate the use of the curveto function which 
ates a Bezier curve. This is the way to draw any shape curve in PDF.

##### t6.pl  --  Bezier Curves  ############################
BEGIN {
     $PDF_LIB = $ENV{"$PDF_LIB"};
September 12, 1996 22



     unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t6.pdf’);

$pdf->newPage ();

$g = $pdf->beginGraphic ();

$xc = 4.25 * 72;
$yc = 9 * 72;
$g->beginText (’Helvetica-Bold’, 18);
$g->textCenter ($xc, $yc, ’t6.pl:  Bezier Curve Examples’);
$g->endText ();

$D = 250;                 ## width of curve sample
$dx = 50;                 ## init. x-diff of Curr.Pt. and P1
                          ## and of P2 and P3
$d = $D - 2*$dx;          ## init. x-diff. of P1 and P2
$dy = 100;                ## height of curve
$tdu = 12;                ## upper vertical text adjustment
$tdl = 16;                ## lower vertical text adjustment

$x = $xc - $dx - $d/2;    ## x-coord. of current point
$y = $yc - 60 - $dy;      ## y-coord. of init. current point
$x1 = $x + $dx;           ## x-coord. of 1. control point
$x2 = $x1 + $d;           ## x-coord. of 2. control point
$x3 = $x2 + $dx;          ## x-coord. of end point
$y1 = $y + $dy;           ## init. y-coord. of both ctrl pts

foreach $s (0, 25, 25) {

$x1 -= $s;
$x2 -= $s;

$g->setLinewidth (3);
$g->setColors (’s’, ’black’);

$g->moveto ($x, $y);
$g->curveto ($x1, $y1, $x2, $y1, $x3, $y);
$g->stroke ();
September 12, 1996 23



re to be
. It is
ntered.

 shifted
es the

 color

y the

g the
ontal
$g->setLinewidth (1);
$g->setColors (’s’, ’red’);

$g->moveto ($x, $y);
$g->lineto ($x1, $y1);
$g->moveto ($x3, $y);
$g->lineto ($x2, $y1);
$g->stroke;

$g->beginText (’Helvetica-Bold’, 12);
$g->textCenter ($x, $y-$tdl, ’Curr. Pt.’);
$g->textCenter ($x1, $y1+$tdu, ’P1’);
$g->textCenter ($x2, $y1+$tdu, ’P2’);
$g->textCenter ($x3, $y-$tdl, ’P3’);
$g->endText ();

$y  -= $d + 40;
$y1 -= $d + 40;
$y2 -= $d + 40;
$y3 -= $d + 40;

};

$g->endGraphic ();

$pdf->pdfClose ();
#####################  E N D  ##############################

In the t6.pl sample program the foreach statement controls the loop. Three curves a
drawn. The first is a symmetric curve. The shift parameter, $s, has the value zero
drawn with the x-coordinates as they are set up before the loop statement is ever e
In the second and third loops the x-values of the control points P1 and P2 are each
by 25 user units to the left. The variable $s, set by the foreach statement, specifi
amount of the shift.

The program clearly demonstrates the setting of the environment (here the stroking
and line width) before each section is drawn by a stroke function and thus being put into
the PDF. It also demonstrates that the stroking color (set by thesetColors function with
the “s” parameter) does not influence the drawing of text. Its color is determined b
filling color (set with the “f” parameter). Here it remains the default: black.

3.7  Scaled and Boxed Text String

This sample program demonstrates the use of a measuring function for obtainin
length of a text string when rendered in a particular environment, i.e. font and horiz
scale factor.
September 12, 1996 24



##### Test t7.pl  --  Scaled and Boxed Text String  ########
BEGIN {
     $PDF_LIB = $ENV{"$PDF_LIB"};
     unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t7.pdf’);

$pdf->newPage ();            ##### init. page

$x = 4.25 * 72;
$y = 9 * 72;

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 24);
$g->textCenter ($x, $y, ’t7.pl:  Scaled and Boxed Text’);
$g->endText ();

$p = 18;
$d = 80;
$y -= 100;

$s = ’Text horizontally normal’;
$g->beginText ($p);
$g->textCenter ($x, $y, $s);
$g->endText ();

$y -= $d;

$s = ’Text horizontally compressed’;

$g->beginText ();
$g->setTextHorizScale (60);
$g->textCenter ($x, $y, $s);
$g->endText ();
$w = $g->textWidth ($s);
$llx = $x - $w/2;
$lly = $y - 0.2*$p;
$urx = $llx + $w;
$ury = $lly + $p;
September 12, 1996 25



x and
 use of
ntly

e and

r
(in the
 com-

deter-
se of
point
$g->rectangle ($llx, $lly, $urx-$llx, $ury-$lly);
$g->stroke ();

$g->setColors (’f’, ’yellow’);

$d = 100;
$lly -= $d;
$ury -= $d;

$s = ’Text horizontally expanded’;
$g->setTextHorizScale (130);
$w = $g->textWidth ($s);
$llx = $x - $w/2;
$urx = $llx + $w;

$g->rectangle ($llx, $lly, $urx-$llx, $ury-$lly);
$g->fill ();

$g->setColors (’f’, ’black’);

$y -= $d;

$g->beginText ();
$g->textCenter ($x, $y, $s);
$g->endText ();

$g->endGraphic ();

$pdf->pdfClose ();
#####################  E N D  ##############################

In this sample program, t7.pl, we show how a text string is enclosed by a drawn bo
how it is rendered on top of a colored background. The heart of the operation is the
the textWidth  function. It returns the horizontal extent of the text string in the curre
active environment.

The execution of the two tasks is straight forward. For convenience, font point siz
text string are put into variables ($p and $s). Both are needed more than once.

Note that the parameter of thesetTextHorizScale function is not the true scale factor (fo
example, 1.3 if 30% expansion is desired) but it is the percentage of the expansion 
example, 130). Unfortunately, 1.3 is also a correct parameter value, resulting in a
pression of 0.013%.

The point size is used for the vertical extension of the box. But what remains to be 
mined is the vertical position of the box in relation to the printed text string. Becau
the lack of additional font parameters, we use trial and error for the fraction of the 
September 12, 1996 26



o posi-
2*$p)

e pro-
urveto
 sec-
size we want to see below the baseline of the printed string. In this case it suffices t
tion the lower edge of the box 20% of the point size below the center of the text (0.
and the lower extender of the lowercase p falls still within the box.

3.8  Circles and Circular Arcs

In this sample program we use a half circle to generate a circle. In the first part of th
gram, circular arcs of various angles are generated. Each is the result of only one c
invocation, i.e., of one Bezier segment. Note that this suffices for a half circle. In the
ond part we demonstrate the generation of half circles of varying radius.

##### Test t8.pl  --  Circular Arcs and Circles  ###########
BEGIN {
    $PDF_LIB = $ENV{"$PDF_LIB"};
    unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t8.pdf’);

$pdf->newPage ();            ##### init. page

$x = 4.25 * 72;
$y = 9 * 72;

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 18);
$g->textCenter ($x, $y,
                ’t8.pl:  Circular Arcs (one Bezier segment each)’);
$g->endText ();

$ax = 4.25 * 72;
$ay = $y - 120;

foreach $w (25, 35, 45, 90) {

@ar = &arc (100, $w);

$g->setColors (’s’, ’black’);
$g->setLinewidth (2);
$g->moveto ($ax+$ar[0], $ay+$ar[1]);
$g->curveto ($ax+$ar[2], $ay+$ar[3], $ax+$ar[4],
September 12, 1996 27



             $ay+$ar[5], $ax+$ar[6], $ay+$ar[7]);
$g->stroke ();

$g->setColors (’s’, ’red’);
$g->setLinewidth (0.5);
$g->moveto ($ax+$ar[0], $ay+$ar[1]);
$g->lineto ($ax, $ay);
$g->lineto ($ax+$ar[6], $ay+$ar[7]);
$g->stroke ();

$ay -= 130;
};

$g->endGraphic ();

$pdf->newPage ();            ##### init. page

$ax = 4.25 * 72;
$ay = $y - 72;

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 18);
$g->textCenter ($x, $y,
                ’t8.pl:  Circles (from two Bezier half circles)’);
$g->endText ();

$d = 20;

foreach $r (25, 50, 100) {

$ay -= $r;

@ci = &arc ($r, 90);     ##### half circle by Bezier

$c0 = $ax+$ci[0];        ##### adjust coordinates
$c1 = $ay+$ci[1];
$c2 = $ax+$ci[2];
$c3 = $ay+$ci[3];
$c4 = $ax+$ci[4];
$c5 = $ay+$ci[5];
$c6 = $ax+$ci[6];
$c7 = $ay+$ci[7];

$g->setLinewidth (2);
$g->setColors (’s’, ’black’);
September 12, 1996 28



                         ##### move to and draw curve
$g->moveto ($c0, $c1);
$g->curveto ($c2, $c3, $c4, $c5, $c6, $c7);
$g->stroke ();

$c0 = $ax-$ci[0];        ##### adjust coordinates
$c1 = $ay-$ci[1];
$c2 = $ax-$ci[2];
$c3 = $ay-$ci[3];
$c4 = $ax-$ci[4];
$c5 = $ay-$ci[5];
$c6 = $ax-$ci[6];
$c7 = $ay-$ci[7];

                                 ##### move to and draw curve
$g->moveto ($c0, $c1);
$g->curveto ($c2, $c3, $c4, $c5, $c6, $c7);
$g->stroke ();

$y1 = $c1;               ##### set for red line
$x1 = $ax - $r - $d;
$x2 = $x1 + 2*($r+$d);

$g->setLinewidth (0.5);
$g->setColors (’s’, ’red’);

$g->moveto ($x1, $y1);   ##### draw red line
$g->lineto ($x2, $y1);
$g->stroke ();

$ay -= $r + 50;          ##### adjust vert. pos.
};

$g->endGraphic ();

$pdf->pdfClose ();

sub arc {
$r = $_[0];
$a = (3.141593 / 180) * $_[1];

$l = ( $r * (4/3) * (1 - cos ($a)) ) / sin ($a);
$x3 = $r * cos (2*$a);
$y3 = $r * sin (2*$a);
$x2 = &chop ($x3 + $l * sin (2*$a));
$y2 = &chop ($y3 - $l * cos (2*$a));
$x3 = &chop ($x3);
September 12, 1996 29



It gen-
 starts
ns an
ntrol

e seg-

ely, for
urve
ts as
for the

xpect
r suffi-
se the
t side
s.

forma-
$y3 = &chop ($y3);
$x1 = &chop ($r);
$y1 = &chop ($l);
$x0 = $r;
$y0 = 0;
@ret = ($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3);
return @ret;

}

sub  chop {
return  ( int ($_[0] * 1000) ) / 1000;

}
#####################  E N D  ##############################

The internal subroutine arc is the basis of all Bezier curves in the sample program. 
erates part of a circular arc of given radius and given semi-angle. The arc always
from the x-axis upwards, with the tangent being perpendicular to the x-axis. It retur
array of eight numbers (four points), which are the origin, the first and second co
points and the end point of the curve.

As the results show even a half circle is still reasonably well approximated by a singl
ment of a Bezier curve.

On the second page we use the arc routine for obtaining a half circle, or more precis
obtaining the four points defining a Bezier curve approximating a half circle. The c
itself is then drawn by the moveto and curveto invocations with these four poin
parameters. The second half circle we generate by using the obvious symmetries 
control points.

During our computations it became apparent that some routines of the PDF-PL e
integers or decimal numbers as input parameters. Scientific notation (as needed fo
ciently small or large numbers) is not accepted. In order to avoid this problem, we u
internal routine chop. It chops our computational results to three decimals on the righ
of the decimal point, before they are submitted as parameters to the PDF-PL routine

3.9  The Transformation Matrix

In this sample program it is demonstrated that generally the sequence of two trans
tions cannot be reversed without changing the result.

##### Test t9.pl  --  The Transformation Matrix  ###########
BEGIN {
    $PDF_LIB = $ENV{"$PDF_LIB"};
    unshift (@INC, $PDF_LIB);
}

use Pdf::File;
September 12, 1996 30



use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t9.pdf’);

$pdf->newPage ();            ##### init. page

$x = 4.25 * 72;
$y = 9 * 72;

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 18);
$g->textCenter ($x, $y, ’t9.pl:  The Transformation Matrix’);
$g->endText ();

$x = 72;
$y -= 100;

$g->setColors (’f’, ’red’);
$g->beginText (’Times-Roman’, 24);
$g->textLeft ($x, $y, ’Sample Text BEFORE transformation!’);
$g->endText ();

$g->gsave ();

$g->ctm (1, 0, 0, 1, 180, 0);
$g->ctm (0.7, 0, 0, 1, 0, 0);

$y -= 100;

$g->setColors (’f’, ’blue’);
$g->beginText (’Times-Roman’, 24);
$g->textLeft ($x, $y,
              ’Sample Text AFTER translation and scaling!’);
$g->endText ();

$g->grestore ();

$g->ctm (0.7, 0, 0, 1, 0, 0);
$g->ctm (1, 0, 0, 1, 180, 0);

$y -= 100;

$g->beginText ();
$g->textLeft ($x, $y,
September 12, 1996 31



ginal
iron-

cces-
ling in
wer

s and
 strings
y the

r-
rinted

hifted

slation
 text
the x-
y 250

mber,
 in the
is is a
se--by
ment

 of the
by the

s.
              ’Sample Text AFTER scaling and translation!’);
$g->endText ();

$g->endGraphic ();

$pdf->pdfClose ();
#####################  E N D  ##############################

In the sample program, t9.pl, we print three lines of text. The first is printed in the ori
environment: red fill color and no coordinate transformations yet. We save this env
ment (gsave).

Now we change to the fill color blue and transform the coordinate system by two su
sive transformations: first a translation along the x-axis by 250 user units, then a sca
x-direction by a factor of 0.7. Remember the original coordinate origin is the left lo
corner of the page!

After the transformation the blue text is right shifted (the translation) by 250 user unit
somewhat compressed (the scaling). (We changed the y-coordinate so that the text
are not printed on top of each other. But this coordinate is not influenced at all b
transformations.)

Now we restore the saved environment (grestore). Then we apply the same two transfo
mations again, but in reverse order: first the translation and then the scaling. The p
text appears in blue and is compressed similarly in x-direction as before, but it is s
less to the right than before.

The reason for the difference lies in the fact that the translation in the first case (tran
followed by scaling) remains 250 user units. Together with the x- coordinate of the
positioning this results in a given starting point for the string. But in the second case 
axis is first scaled by 0.7, i.e. each coordinate unit is 30% shorter. The translation b
units is now worth only 70% of the previous translation, i.e. 175 user units. Reme
user units remain the units of measure in the original coordinate system. Each x-unit
coordinate system after the transformation is now worth only 70% of a user unit. Th
consequence of the philosophy of transformations in the PDF-PL, caused--of cour
the philosophy in the PDF: We transform the coordinate system to the new environ
(we translate it, rotate it, scale it, skew it). But the object remains the same in terms
number of units it is specified in. Of course, the units may have changed their size 
transformation.

3.10  Clipping Path

This program demonstrates how a path, here a rotated square, clips a pattern of line

##### Test t10.pl  --  Clipping  ###########################
BEGIN {
    $PDF_LIB = $ENV{"$PDF_LIB"};
    unshift (@INC, $PDF_LIB);
September 12, 1996 32



}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t10.pdf’);

$pdf->newPage ();            ##### init. page

$x = 4.25 * 72;
$y = 9 * 72;

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 18);
$g->textCenter ($x, $y, ’t10.pl:  Clipping’);
$g->endText ();

$g->ctm (1, 0, 0, 1, $x, 6*72); #### shift to center of page

$d = 100;
$g->setColors (’s’, ’red’);
$g->setLinewidth (8);

$g->moveto (0, $d);            ##### start clipping path
$g->lineto (-$d, 0);
$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();

$g->clip ();

$g->stroke ();

$g->setLinewidth (6);
$g->setColors (’s’, ’blue’);
$x = -$d;
$sl = $d/5;
$dy = $d/5;

for ($y = -$d-$sl; $y<$d+$sl; $y +=$dy) {
$g->moveto ($x, $y);
$g->lineto ($x+2*$d, $y+$sl);
$g->stroke ();

};
September 12, 1996 33



emon-

 to the
 done

 of 8
by the
t only
Now,
 path.
g on

pping

llow

place
g the
:

 pat-
nder-
$g->endGraphic ();

$pdf->pdfClose ();
#####################  E N D  ##############################

In the sample program t10.pl some aspects of clipping by a user specified path are d
strated.

First, i.e., after printing the title of the sample page, the coordinate system is shifted
desired center of the clipping path, approximately to the center of the page. This is
for user convenience: the involved coordinates become easier to compute.

Then the clipping path is defined. It starts with setting up the environment: line width
points and stroking color red. Then the path along the rotated square is defined 
moveto and lineto functions, using $d as the length of the half diagonal. Note tha
three lines are explicitly defined while the last is defined by the closepath function. 
before the stroking occurs the clip function is invoked, defining the path as a clipping
Up to this time, a square is drawn in red color with a line width of 8 point and standin
one corner.

Now we must generate the pattern which is to be clipped by the currently active cli
path.

We use a for loop to draw slightly skewed horizontal lines of linewidth 6 points and ye
color. Care is taken to make sure that the lines cover the entire square.

Note that the yellow lines partially overlap the red square line. The clipping takes 
exactly at the clipping path which by definition is the mathematical line running alon
center of the red lines. The exact order of the rendering of color onto the page is this

1.  Fill color of the clipping path

2.   Stroked lines color of the clipping path

3.  Fill color of the clipped pattern

4.   Stroked lines color of the clipped pattern

Not all four of these cases may actually exist. In our case only numbers 2 and 4 do.

It should be noted that all that is necessary is to remove theclip function from the program
in order to obtain the successive drawing of the clip pattern followed by the clipped
ternwithout  any clipping taking place. Of course, the above stated order of color re
ing on the output medium is unchanged.
September 12, 1996 34



.

3.11  Text as Clipping Path

This sample program demonstrates how some text characters clip a pattern of lines

##### Test t11.pl  --  Text as Clipping Path  ##############
BEGIN {
    $PDF_LIB = $ENV{"$PDF_LIB"};
    unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t11.pdf’);

$pdf->newPage ();            ##### init. page

$x = 4.25 * 72;
$y = 9 * 72;

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 18);
$g->textCenter ($x, $y, ’t11.pl:  Text as Clipping Path’);
$g->endText ();

$y = 5*72;

$g->setTextRender (5);

$g->beginText (’Times-Roman’, $p=216);
$g->textCenter ($x, $y, $s=’Clip’);
$g->endText ();

$w = $g->textWidth ($s);

$g->setLinewidth (1);
$x = $x - $w/2;
$y0 = $y;
$dy = 5;

for ($y=$y0-0.3*$p; $y<$y0+1.1*$p;  $y+=$dy ) {
$g->moveto ($x, $y);
$g->lineto ($x+$w, $y);
$g->stroke ();
September 12, 1996 35



ori-
char-
of the
define

 simi-
ing in
gh to
rs com-
oveto

e out-
alling
s. The
};

$g->endGraphic ();

$pdf->pdfClose ();

#####################  E N D  ##############################

In sample program t11.pl we show the word Clip drawn in outline and filled with a h
zontal line pattern. Again, first the clipping path (which here is the succession of all 
acter outlines of the word Clip) is defined and drawn.   This happens in the first part 
program (the second TMA!). The rendering mode 5 (outline the characters and 
them as clipping paths) is applied to the text string Clip.

Now the lines to be clipped are drawn. For this purpose we imagine a text string box
lar to the one in sample program t7.pl. We compute the width (length) of the text str
144 point Times-Roman font. Again we estimate that 20% of the point size is enou
cover the descenders of the font. Thus we assure that we cover the text characte
pletely. The horizontal lines are drawn in a straight forward manner by the triplets (m
lineto stroke).

3.12  Text Blocks and Text Parameters

In this sample program we demonstrate some functions which permit printing on th
put medium not just one text line at a time but an entire set of lines. Furthermore, c
these functions also requires specification of some of the text environment variable
influence of some of the other major text variables is also shown.

##### Test t12.pl  --  Text Blocks and Text Parameters  ####
BEGIN {
    $PDF_LIB = $ENV{"$PDF_LIB"};
    unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t12.pdf’);

$pdf->newPage ();            ##### init. page

$x = 4.25 * 72;
$y = 10 * 72;

$g = $pdf->beginGraphic ();
September 12, 1996 36



$g->beginText (’Helvetica’, 18);

     $g->textCenter ($x, $y, ’Text Block and
Parameters’);

$g->endText ();

$y = 9*72;

@tb = (’We use this same block for testing’,
       ’the different text parameters:’,
       ’character spacing, word spacing,’,
       ’leading,.....’);

$dy = 110;
$xleft = 72;
$xcenter = 4.25 * 72;
$xright = 7.25 * 72;
$fn = ’Helvetica’;
$fs = 12;
$l = 14;

$g->textBlockLeft ($xleft, $y, $fn, $fs, $l, @tb);

$y -= $dy;
$g->setCharSpace (8);

$g->textBlockRight ($xright, $y, $fn, $fs, $l, @tb);

$y -= $dy;
$g->setCharSpace (0);
$g->setTextWordSpace (8);

$g->textBlockCenter ($xcenter, $y, $fn, $fs, $l, @tb);

$y -= $dy;
$g->setTextWordSpace (0);
$l = 20;

$g->textBlockLeft ($xleft, $y, $fn, $fs, $l, @tb);

$y -= $dy;
$l = 14;
$g->setTextHorizScale (70);

$g->textBlockLeft ($xleft, $y, $fn, $fs, $l, @tb);
September 12, 1996 37



several
a stan-
ns no

 font

d, i.e.
$y -= $dy;
$g->setTextHorizScale (130);

$g->textBlockLeft ($xleft, $y, $fn, $fs, $l, @tb);

$g->setTextHorizScale (100);

$g->endGraphic ();

$pdf->newPage ();

$g = $pdf->beginGraphic ();

@offset = (1.0, 0.75, 0.5, 0.25, 0);

$g->beginText (’Helvetica’, 18);
     $g->textCenter (4.25*72, 10*72,

                     ’textBlockOffset ({@offset}, ....)’);
$g->endText ();

$y = 8.5 * 72;

foreach $offs (@offset) {

     $g->textBlockOffset ($offs, $xcenter, $y, $fn, $fs, $l, @tb);
     $y -= $dy;
}

$g->endGraphic ();

$pdf->pdfClose ();
#####################  E N D  ##############################

In the sample program t12.pl the same array of text lines is used to demonstrate 
text block rendering functions and several text parameter setting functions. We use 
dard value of 14 point for the leading parameter. The PDF default is 0, which mea
leading at all. All consecutive lines are printed at the same vertical position.

First the text block is printed using thetextBlockLeft  function. This function prints the
lines left adjusted starting with the first line at the specified (x, y) position. Except for
name and font size, all text parameters are at their default values.

Then character spacing is set to 10 points and the text block is printed right adjuste
using the textBlockRight function.
September 12, 1996 38



points.

e lines

d left
nsion

 page
of
parent,
of the

ilable in
After resetting the character space to its default value, word spacing is set to 10 
Now the text block is to be centered, which is done by using thetextBlockCenter func-
tion.

After resetting the word space to its default value, the leading is set to 20 points. Th
are now vertically space by 6 points more than in our normal case (14 points).

After resetting the leading to our standard value of 14 points the text block is printe
adjusted first with a horizontal compression of 30% and then with a horizontal expa
of 30%.

After resetting the horizontal scaling the text block is printed five times on the next
demonstrating thetextBlockOffset function.  As horizontal reference point the center 
each line is used.  The offset varies from 1 over .75, .50, and .25 to 0.  It becomes ap
that the use of the first, third and fifth of these values is equivalent to invocations 
functionstextBlockLeft , textBlockCenter andtextBlockRight respectively.

3.13  Colorspaces

This sample program demonstrates the use of some of the color spaces that are ava
the PDF.

##### Test t13.pl  --  Set Color Spaces  ###################
BEGIN {
    $PDF_LIB = $ENV{"$PDF_LIB"};
    unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (’./t13.pdf’);

$pdf->newPage ();            ##### init. page

$x = 4.25 * 72;
$y = 9 * 72;

$g = $pdf->beginGraphic ();

$g->beginText (’Helvetica’, 18);
$g->textCenter ($x, $y, ’t13.pl:  Set Color Spaces’);
$g->endText ();

$tx = 50;
September 12, 1996 39



$d = 30;

$g->ctm (1, 0, 0, 1, 3*72, 8*72); #### shift to center page

$g->setColors (’f’, ’DeviceRGB’, 0.2, 0.3, 0.7);

$g->moveto (0, $d);            ##### start path
$g->lineto (-$d, 0);
$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText (15);
$g->textLeft ($tx, 0, ’DeviceRGB  0.2  0.3  0.7’);
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72);  ##### shift down one inch

$g->setColors (’f’, 0.7, 0.2, 0.2);

$g->moveto (0, $d);            ##### start path
$g->lineto (-$d, 0);
$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, ’DeviceRGB  0.7  0.6  0.2’);
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72);  ##### shift down one inch

$g->setColors (’f’, ’DeviceCMYK’, 0.8, 0.3, 0.2, 0.1);

$g->moveto (0, $d);            ##### start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, ’DeviceCMYK  0.8  0.3  0.2  0.1’);
$g->endText ();
September 12, 1996 40



$g->ctm (1, 0, 0, 1, 0, -72);  ##### shift down one inch

$g->setColors (’f’, 0.2, 0.3, 0.9, 0.1);

$g->moveto (0, $d);            ##### start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, ’DeviceCMYK  0.2  0.3  0.9  0.1’);
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72);  ##### shift down one inch

$g->setColors (’f’, ’DeviceGray’,  0.8);

$g->moveto (0, $d);            ##### start path
$g->lineto (-$d, 0);
$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, ’DeviceGRAY  0.8’);
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72);  ##### shift down one inch

$g->setColors (’f’, 0.3);

$g->moveto (0, $d);            ##### start path
$g->lineto (-$d, 0);
$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, ’DeviceGRAY  0.3’);
$g->endText ();
September 12, 1996 41



 is
. Then

ify only
m the

) must
t.

k.

PL.

 open
ended
in the
PDF-

spond-
nction
pera-
mmit-

bject
arated

e PDF

 PDF.
$g->endGraphic ();

$pdf->pdfClose ();
#####################  E N D  ##############################

The sample program t13.pl shows two examples each of the three color spacesDevice-
RGB, DeviceCYMK andDeviceGray. For each of the six examples the ctm function
used to transform the coordinate system into the center of a square filled with color
the rotated square is drawn easily.

The name of the color space need be specified only once. Then it is enough to spec
another set of color components in order to change the color. Note, that, aside fro
first parameter (fill or stroke), a new color (set of color components between 0 and 1
always be specified, regardless whether a new color space has been specified or no

The single number required for theDeviceGray color space is 1 for white and 0 for blac
This to me is counter intuitive!

Note that in the program currently several replacement of thesetColors function by the
forceColors function have been done in order to overcome a current bug in the PDF-

4.0  The Function Reference List

This list contains those functions of the PDF-PL that I currently understand. One can
the PDF-PL to the PDF builder to a deeper or less deep level. This current list is int
for a top level user, the typical application oriented person who is not interested 
intricacies of internal implementation but only in correct and successful use of the 
PL to build error free PDFs.

It should be noted that most of the environment setting functions, set..., have a corre
ing force... function. Such force... function does exactly the same as the set... fu
except that it forces immediate committing of the corresponding PDF operator (or o
tors) into the PDF stream. In the case of a set... function the PDF operator is not co
ted to the stream until it is necessary: it iscached.

The PDF-PL library is implemented using Perl5 which provides the concepts of O
Oriented Programming. Therefore we list the user PDF-PL functions (methods) sep
into groups for each of the applicable object classes: File and Graphic.

4.1 “File” Methods

These are the methods of the object class File which are visible to the user (here th
builder).

info (“title”, t, “author”, a, “creator”, c, “subject”, s)

Supplies values for several keywords to be saved by the internal routines in the new
September 12, 1996 42



enerat-

y

y a key
itted.

d.

 most

objects
Table

tever is

eady
May be invoked anywhere between thepdfOpen and pdfClose functions, but prudent
programming practice suggests that it be placed at the start or the end of the PDF g
ing code.

If there are more than one occurrences ofinfo invocation then only the last one for an
keyword will be properly saved by the internal routines.

Parameters:

Must be an even number of character strings. Each pair represents a key followed b
value. The parameter pairs may appear in any order and any of the pairs may be om

 newPage (pn)

Creates a new page.

Parameters:

pn is the page number of the new page. This page must not yet have been generate

The parameter is optional.

Default:

If there is no page number specified the new page number is the next after the
recently created one.

Note that there must beno gaps in the sequence of page numbers starting with one.

 pdfClose ()

Does whatever is necessary to end the PDF body, mainly generating those PDF 
that are still missing in the output file. Then generates the PDF Trailer and XREF 
and writes them to the output file and closes it.

pdfOpen (fn)

Opens file fileName as the output file, generates the PDF Header, and does wha
necessary to start the body of the PDF.

Parameters:

fn is either a filename string or a reference to a filehandle for which the file is alr
open. In the latter case opening of the file does not occur.

The parameter is required.

setPageSize (w, h)
September 12, 1996 43



e PDF
e start.

ere the

 to a
h the

w to
/she
r on the

MA is

efault
t at the
once
Sets the default size of the pages. This invocation may appear almost anywhere in th
builder’s program, but prudent programming practices suggest that it be placed at th

Parameters:

w is the page width,h the page height. They are to be specified in user units.

The parameters are required.

Default:

8.5 inch by 11 inches. This is the default page size if there is no invocation ofsetPageSize
at all in the user’s PDF building Perl5 program.

4.2  “Graphic” Methods

These are the methods of the object class Graphic which are visible to the user (h
PDF builder).

addGraphic (pn)

Adds everything that is marked by that GMA (or more precisely, that PDF stream)
specified page. That GMA was specified by the Graphic object instance on whic
method, addGraphic, is invoked.

Parameters:

pn is the number of the affected page (see above).

The parameter is required.

beginGraphic (pn)

Initializes the beginning of a new GMA. The PDF builder is expected to begin no
invoke functions which set the environmental variables for the GMA in the way he
desires as well as to draw graphic entities (lines, curves, etc.) he/she wants to rende
current page. A list of the available functions can be found in the sectionsThe Marking of
the Page andThe Current Point and Paths.

A GMA must be ended by invoking theendGraphic function.

More than one GMA may be started and ended any page.

If the page number parameter is specified it designates the page to which this new G
to be appended.

If a new GMA is started the complete set of environmental variables is reset to the d
values. Exceptions are the font name and font size. The PDF-PL routines expect tha
beginning of a TMA these two text environment variables are defined. However, 
September 12, 1996 44



TMA
ilder

rted

f all
MA.

size of

estric-

uilder
urrent
 them
defined within a GMA, they propagate up to theendGraphic function invocation. Hence,
it is necessary to specify font name and font size only at the beginning of the first 
within the current GMA. Later TMAs may change font name and/or font size if the bu
so desires.

Parameters:

pn is optional. If it is specified it is the number of the page to which the newly sta
GMA is appended. This page must already exist.

Returns:

A reference to the new GMA. This reference is used to qualify the invocation o
graphic marking, text marking and environment changing functions within this G
This is demonstrated by all sample programs.

 beginText (fn, fs)

Signals the beginning of text to be put on the page and may specify the name and 
the font to be used.

Parameters:

fn is the name of the font, for example ‘Helvetica’ or ‘Helvetica-Bold’ andfs is the size of
the font in printers points. Other than that it must be a positive number there is no r
tion on the size of the font.

Both parameters are optional. However, if one or both are not specified, the PDF b
must make sure that at the point of this function invocation both are defined in the c
GMA. This means, at least once since the beginning of the current GMA, each of
must have been specified on abeginText, setFont or one of the text block functions.

Permissible font names in the current PDF-PL package are:

• Courier
• Helvetica
• Helvetica-Bold
• Helvetica-Oblique
• Helvetica-BoldOblique
• Times-Roman
• Times-Bold
• Times-Italic
• Times-BoldItalic
• Symbol
• ZapfDingbat

Default:
September 12, 1996 45



ext can

sely,
pera-

g rule.

ecting

ecting
g the

m
 output
ible.

in of

by also
None. The PDF builder must at least once set the font name and font size before t
be put on the page.

 clip ()

Makes the current path a clipping path.

This function invocation must occur within the definition of a closed path. More preci
it must occur after the definition of the last clipping segment and the path painting o
tor.

In order to determine the actual clipping area, this operator uses the nonzero windin

 closepath ()

Closes the currently open path in the current GMA by appending a straight line conn
the current point with the beginning of the path.

 closepathFillStroke ()

Closes the currently open path in the current GMA by appending a straight line conn
the current point with the beginning of the path. Then strokes and fills the path usin
nonzero winding rule.

This is a succession of the closepath function followed by the fillStroke function.

 ctm (p1, p2, p3, p4, tx, ty)

ctm stands forcurrent transformation matrix. It transforms the current coordinate syste
into a new one thereby changing the appearance of the text and graphics on the
medium. The transformations of translation, rotation, scaling, and skewing are poss

Parameters:

tx and ty are the amounts of translation in x- and y- direction, respectively. The orig
the new coordinate system is the point (tx, ty) in the old coordinate system.

p1, p2, p3, andp4 specify rotation, scaling and skewing.

A pure rotation in the x-y-plane by the angle A is specified by

p1 = cos A
p2 = sin A
p3 = -sin A
p4 = cos A
tx  =  ty  = 0

Rotation and translation can be combined (and their sequence does not matter) 
specifying the amount of translation in the x- and y-directions, tx and ty.
September 12, 1996 46



e sys-
 y-
 are
m.
.

kwise
m the

ever, it
ions is
ce does
t the
g the

 point
Pure scaling is specified by

p1 = scale factor in x-direction
p4 = scale factor in y-direction
p2 = p3 = tx  = ty  = 0

This transforms the coordinates so that one unit in x- direction of the new coordinat
tem is the same size as p1 units in the previous coordinate system, and similarly for the
direction. In other words ifp1 is greater than one the text or graphics to be rendered
now greater by the factorp1 in x-direction than they were in the old coordinate syste
Similarly, if p1 is smaller than one, the rendered text or graphics will become smaller

Pure skewing is accomplished by the following choice of parameters

p2 = tan A
p3 = tan B
p1 = p4 = 1
tx  = ty  = 0

This skews the x-axis of the new coordinate system by the angle A (measured cloc
from the x-direction) and the y- axis by the angle B (measured counter clockwise fro
y- direction).

Transformations may be cascaded, i.e., one may be executed after another. How
must be noted that the results may be different, if the sequence of the transformat
changed. As stated before, rotation and translation are independent. Their sequen
not matter. But, for example scaling the x-direction followed by a translation is no
same as first translating the x-axis (sliding it in is own direction) and then performin
scaling. See the sample program, t9.pl,The Transformation Matrix.

Default:

No transformation.

curveto (x1, y1, x2, y2, x3, y3)

Adds a Bezier curve to the current path definition and moves the current point.

Parameters:

Points (x1, y1) and (x2, y2) are the control points. Point (x3, y3) is the end point of the
curve. The point coordinates are in user units. All six parameters are required. The
(x3, y3) is the new current point.

endpath ()

Ends the current path without closing it.

endGraphic ()
September 12, 1996 47



ay be

fore

sely,
pera-

gions
 sec-

rmine
 rule

eter-
n of

r rule
ana-
Ends the range of a new GMA. This function must be invoked before a new page m
started again.

endText ()

Ends a TMA for positioning text on the page. This function must be invoked be
graphic marking functions may be invoked again within the encompassing GMA.

eoclip ()

Makes the current path a clipping path.

This function invocation must occur within the definition of a closed path. More preci
it must occur after the definition of the last clipping segment and the path painting o
tor.

In order to determine the actual clipping area, this operator uses the even-odd rule.

evenOddFill ()

Fills the most recently ended path following the even-odd rule to determine which re
of the path to fill with the current filling color. For an explanation of the rule see the
tion Path Painting Operators in the PDF Manual.

evenOddFillStroke ()

Fills and strokes the most recently ended path following the even-odd rule to dete
which regions of the path to fill with the current filling color. For an explanation of the
see the sectionPath Painting Operators in the PDF Manual.

This is a succession of theevenOddFill function followed by thestroke function.

fill ()

Fills the most recently ended path following the nonzero winding number rule to d
mine which regions of the path to fill with the current filling color. For an explanatio
the rule see the sectionPath Painting Operatorsin the PDF Manual.

fillStroke ()

Fills and strokes the most recently ended path following the nonzero winding numbe
to determine which regions of the path to fill with the current filling color. For an expl
tion of the rule see the sectionPath Painting Operators in the PDF Manual.

This is a succession of the fill function followed by the stroke function.

grestore ()
September 12, 1996 48



thin a
tored

t not

rner
Restores the most recently saved environment. This function must be invoked wi
GMA, but not within an enclosed TMA. See the gsave function for a list of the res
environment variables.

gsave ()

Saves the current environment. This function must be invoked within a GMA, bu
within an enclosed TMA.

The environment variables saved are:

• color for stroking and filling
• line width
• line cap style
• line dash pattern
• line join style
• miter limit
• font name
• font size
• current point
• current clipping paths

See the grestore function for restoring the environment.

lineto (x, y)

Draws a straight line from the current point to the point (x, y).

Parameters:

The point (x, y) is the new current point. Both point coordinates are in user units.

The parameters are required.

moveto (x, y)

Moves the current point.

Parameters:

The point (x, y) is the new current point. Both point coordinates are in user units.

The parameters are required.

The default current point at the beginning of a new GMA is (0, 0), i.e. the left lower co
of the page.

rectangle (x, y, w, h)
September 12, 1996 49



am-

charac-

ing
dering

ok-
Adds a rectangle to the current path definition.

Parameters:

(x, y) is the left lower point of the rectangle. w is its width and h its height. All four par
eters must be user units. The point (x, y) becomes the new current point.

All four parameters are required.

setCharSpace (c), forceCharSpace (c)

sets the intercharacter space in a text string.

Parameters:

c is the character-space in user units to be added between two immediatly adjacent 
ters within a text string.

The parameter is required.

Default: 0

setColors (sf, c),  forceColors (sf, c, s1, s2, s3)

Used within a GMA to set a new color for drawing lines and/or filling paths. Draw
applies to paths, lines and boxes. Filling applies to closed paths, boxes and the ren
of text strings.

Parameters:

sf must be one of the strings ‘s’, ‘f’, ‘sf’ or ‘fs’. An ‘s’ indicates that color is the new str
ing color and an ëfí that it is also the new filling color.

c may be one of the colors predefined in the PDF-PL:

• black
• blue
• darkblue
• gray
• green
• red
• white
• yellow

If c is not one of the predefined colors is must specify a color space:

• ‘DeviceRGB’
• ‘DeviceCYMK’
September 12, 1996 50



GB
e three
 four
1);. For

s con-
nd

 valid
s of

ed with

ucces-
ecified

rts the

 and a

th and
ce it is
• ‘DeviceGray’

In this casec must be followed by a color specification. For the color space DeviceR
three components are required which specify the mix of red, green and blue. Thes
numbers,s1, s2, s3, must be between 0 and 1 each. For DeviceCYMK there must be
component values for cyan, magenta, yellow and black, again each between 0 and (
DeviceGray there need be only one parameter, again between 0 and 1.

The first parameter is required. The others must be specified as stated.

Default:

Both fill and stroke default colors are black.

setDashPattern (a, p),  forceDashPattern (a, p)

Specifies that all lines drawn are to be of a particular kind. For details and example
sult the sectionLine Dash Pattern in the PDF Manual or see the text following the seco
sample programLine Samples.

It should be noted that the drawing of the dashes otherwise follows the currently
environmental variables. The width is determined by the current line width. End
dashes are treated with the current line cap style. Corners within dashes are treat
the current line join style.

Parameters:

a must be an array of numbers. These numbers specify, in user units, the length of s
sive strokes and gaps along a stroked path or line. If this number is odd, the last sp
dash length is also the length of the last gap.

p must be a single number. It specifies the phase with which the dash pattern sta
path, measured in user units.

The parameters are required.

Default:

The default dash pattern is a solid line which can be specified by an empty array
phase value of 0.

setFlatness (f), forceFlatness (f)

Sets a limit for the maximum permitted distance between a mathematical correct pa
an approximation constructed from straight line segments. It is device dependent sin
measured in device pixels.

Parameters:
September 12, 1996 51



e.

etween

estric-

e PDF
 cur-

t have

ext can

ult the
f is the distance in device pixels which is still tolerable. It must be 0 and 100 inclusiv

The parameter is required.

Default:

0, which means that the device flatness is to be used.

setFont (fn, fs),  forceFont (fn, fs)

Sets a new font name and/or font size. This permits changing the font parameters b
text invocations within a TMA.

Parameters:

fn is the name of the font, for example ‘Helvetica’ or ‘Helvetica-Bold’ andfs is the size of
the font in printers points. Other than that it must be a positive number there is no r
tion on the size.

At least one of the parameters must be specified. However, if one is not specified, th
builder must make sure that at the point of this function invocation it is defined in the
rent GMA. This means, at least once since the beginning of the current GMA, it mus
been specified on abeginText function.

Permissible font names in the current PDF-PL package are:

• Courier
• Helvetica
• Helvetica-Bold
• Helvetica-Oblique
• Helvetica-BoldOblique
• Times-Roman
• Times-Bold
• Times-Italic
• Times-BoldItalic
• Symbol
• ZapfDingbat

Default:

None. The PDF builder must at least once set the font name and font size before t
be output on the page.

setJoinStyle (s),  forceJoinStyle (s)

Sets the style in which two drawn lines are joined. For details and examples cons
sectionLine Join Style in the PDF Manual.
September 12, 1996 52



spec-

ult the

are end

iter
in is

an or
Parameters:

s must be 0, 1 or 2. These values specify miter joins, round joins or bevel joins re
tively.

The parameter is required.

Default:

0, i.e. miter join.

setLineCapStyle (c),  forceLineCapStyle (c)

Sets the style in which a drawn line is terminated. For details and examples cons
sectionLine Cap Style in the PDF Manual.

Parameters:

c must be 0, 1 or 2. These values specify butt end caps, round end caps and squ
caps resp.

The parameter is required.

Default:

0, i.e. butt end capping of the lines.

setLinewidth (w),  forceLinewidth (w)

Specifies a new width for lines to be drawn (for example, by lineto or curveto).

Parameters:

w is the new line width specified in user units. The parameter is required.

setMiterLimit ( m),  forceMiterLimit ( m)

When miter join style is in effect, the miter limit determines whether the miter join (m
length) extends too far away from the point of joining the two lines. Then a bevel jo
substituted. For a detailed figure consult the sectionMiter Limit in the PDF Manual.

Parameters:

m is the limiting ratio of the miter length to the line width. Its value must be greater th
equal to 1. Joins for which this value is exceeded will be converted to bevel joins.

The parameter is required.

Default: 10
September 12, 1996 53



 of 100
output

cces-
 is the
nce
e PDF
 spac-
ce the
 setTextHorizScale (sf),  forceTextHorizScale (sf)

Changes the horizontal extent of text strings by the specified amount.

Parameters:

sf is the scale factor. It is specified as a percentage without the percent sign. A value
means no scaling at all. It is applied to any text string before it is rendered on the 
medium.

The parameter is required.

Default:

100, i.e. no scaling at all.

setTextLeading (l),  forceTextLeading (l)

Sets the vertical distance of successive text baselines in a block of text.

Watch out for this, PDF builders! Using the leading default, which is 0, results in su
sive lines to be printed on top of each other. To the best of my knowledge, leading
distance betweentext boxes, or rather in the old world of leaden type slugs, the dista
between the type slugs of successive text lines. However, in the PDF-PL (and in th
world), leading is the distance between successive text lines, commonly called line
ing. The height (y-extent) of a type slug was equal to the point size. As a consequen
line spacing is equal to the point size plus the leading.

Parameters:

l is the vertical distance of successive baselines in a block of text.

The parameter is required.

Default: 0

setTextRender (r),  forceTextRender (r)

Set the rendering of text on the output medium.

Parameters:

r  may have one of 8 values:

0     fill text with current fill color

1     stroke text with current stroke color

2     fill and stroke text with the respective colors
September 12, 1996 54



ing or

sults

acter is
 visible
can be

ubse-
down-
3     do nothing, text is invisible

4     fill text and add it to the clipping path

5     stroke text and add it to the clipping path

6     fill and stroke text and add it to the clipping path

7     add text to the clipping path

Default:

0, fill text with current fill color.

setTextRise (r),  forceTextRise (r)

Shifts the baseline on which the text rests up or down thus permitting superscript
subscripting.

Parameters:

r is the amount of vertical shift (rise) specified in user units. A positive parameter re
in an up shift, a negative parameter value results in a down shift.

The parameter is required.

Default: 0

setTextWordSpace (w),  forceTextWordSpace (w)

Sets the space between adjacent words in a text string. Note that the blank char
considered a character in the PDF. Hence a word space of zero means the actually
word space is only the width of the blank character. Hence, the default word space 
zero without causing troubles similar to the text leading.

Parameters:

w is the word space in user units.

The parameter is required.

Default: 0

textBlockCenter (x, y, fn, fs, l, ta)

Prints an array of text lines starting with the first line centered at the point (x, y). S
quent lines are printed below, each one centered at (x, y) but the y position shifted 
ward by the leading l.

Parameters:
September 12, 1996 55



n as

 such
(x, y) is the center point of the first line,fn and fs are the font name and font size,l is the
leading,ta is the array of text lines. The valuesx, y, andl must be specified in user units.

All parameters are required.

textBlockLeft (x, y, fn, fs, l, ta)

Prints an array of text lines starting with the first line left adjusted at the point (x, y). Sub-
sequent lines are printed below, each one left adjusted at (x, y) but the y position shifted
downward by the leading l.

Parameters:

(x, y) is the starting point of the first line,fn andfs are the font name and font size,l is the
leading,ta is the array of text lines. The valuesx, y, andl must be specified in user units.

All parameters are required.

textBlockOffset (o, x, y, fn, fs, l, ta)

Prints an array of text lines, each line horizontally adjusted by a specified fractio
described below.

Parameters:

o is the offset. It must be a value between 0 and 1 inclusive. Each line is positioned
that theo fraction of it is positioned to the left of the point (x, y), while y is vertically
adjusted by the leading l. Hence, the invocation oftextBlockCenter (x...) is identical to
the invocation oftextBlockOffset (0.5,x....).

fn andfs are the font name and font size,l is the leading. The valuesx, y, andl must be
specified in user units. ta is the array of text lines.

All parameters are required.

textBlockRight (x, y, fn, fs, l, ta)

Prints an array of text lines starting with the first line right adjusted at the point (x, y). Sub-
sequent lines are printed below, each one right adjusted at (x, y) but they position shifted
downward by the leading l.

Parameters:

(x, y) is the starting point of the first line,fn andfs are the font name and font size,l is the
leading. The valuesx, y, andl must be specified in user units.ta is the array of text lines.

All parameters are required.

textCenter (x, y, t)
September 12, 1996 56



Positions the text string centered using current font and font size.

Parameters:

The point (x, y) specifies the position of the center of the text string. The valuesx andy
must be in user units.

t is the text string to be printed.

The parameters are required.

textLeft (x, y, t)

Positions the text string left adjusted using current font and font size.

Parameters:

The point (x, y) specifies the position of the left end of the text string. The valuesx andy
must be in user units.

t is the text string to be printed.

The parameters are required.

textRight (x, y, t)

Positions the text string right adjusted using current font and font size.

Parameters:

The point (x, y) specifies the position of the right end of the text string. The valuesx andy
must be in user units.

t is the text string to be printed.

The parameters are required.

vCurveto (x1, y1, x2, y2)

Adds a Bezier curve to the current path definition and moves the current point.

Parameters:

The current point is the first control point, (x1, y1) is the second control point and (x2, y2)
is the end point of the curve. The point coordinates are in user units.

All four parameters are required.

(x2, y2) is the new current point.
September 12, 1996 57



e

 font

les
es

lt

t the
yCurveto (x1, y1, x2, y2)

Adds a Bezier curve to the current path definition and moves the current point.

Parameters:

Point (x1, y1) is a control point and point (x2, y2) is the second control point as well as th
end point of the curve. The point coordinates are in user units.

All four parameters are required.

(x2, y2) is the new current point.

textWidth (s)

Measures the width (i.e. the horizontal width or the length) of a text string. Uses the
name and size from the currently active environment.

Parameters:

s is the text string for which the width is to be measured.

Returns:

The width of the text string in user units.

5.0 Known Problems

The functionsgsave andgrestore are not working reliably.  The execution of the samp
t4.pl and t9.pl (both using thegsave andgrestore functions) gave rise to error messag
yet the results could still be displayed and printed.

You may find that thesetDashPattern function may not respond correctly to a defau
phase value (see the second dashed line on page 2 of the example in sectionLine Sam-
ples).  This is an Acrobat Exchange 2 bug which will be fixed in Exchange 3.  Bu
PDF-PL generates a correct PDF operator and parameters.
September 12, 1996 58


	1.0 Introduction
	2.0 Building the PDF
	2.1 PDF Top Level Structure
	2.2 The Marking of the Page
	2.3 The Current Point and Paths
	2.4 Clipping
	2.5 User Units and Coordinate System
	2.6 Error Checking

	3.0 Sample Programs
	3.1 The Simplest PDF (The “Hello World!” Case)
	3.2 Two Pages
	3.3 Repeated GMAs
	3.4 Save and Restore the GMA Environment
	3.5 Line Samples
	3.6 Bezier Curves
	3.7 Scaled and Boxed Text String
	3.8 Circles and Circular Arcs
	3.9 The Transformation Matrix
	3.10 Clipping Path
	3.11 Text as Clipping Path
	3.12 Text Blocks and Text Parameters
	3.13 Colorspaces

	4.0 The Function Reference List
	4.1 “File” Methods
	4.2 “Graphic” Methods

	5.0 Known Problems

