The University of

Nottingham

r

Development of an Artificial Neural
Network to Play Othello

Submitted May 2009, in partial fulfilment of the conditions of the
award of the degree BSc (Hons) Computer Science

Alexander J. Pinkney
(ajp06u)

Supervisor: Prof. Graham Kendall

School of Computer Science and Information Technology
University of Nottingham

I hereby declare that this dissertation is all my own work,
except as indicated in the text:

Signature:

Date: / /

Abstract

The aims of this dissertation are twofold: firstly: to program an Othello engine
which can be played by two human players, which will provide information to
the players such as whose go it is, the current state of the board, and where le-
gal moves can currently be made; and, secondly: to develop an Othello playing
algorithm which has no prior knowledge of any tactics or strategies, which is
capable of consistently beating human players and other artificial intelligences.

The former is not necessarily a prerequisite for the latter, but will certainly be
helpful for observing matches, and to act as referee, ensuring that the rules are
enforced; for example, only legal moves should be allowed, and the board state

should be correctly altered after a move has been made.

It is proposed that the latter is to be developed by evolving a population of
artificial neural networks which repeatedly play Othello matches against one
another. After each network has played every other a certain number of times,
the poorest players (determined by numbers of wins, losses and draws) will
then be ‘killed off” and the strongest players duplicated and slightly modified,
and so on, in effect, recursively generating better and better players, until such
time as the system reaches a plateau.

CONTENTS CONTENTS
Contents

1 Introduction 3

11 Othelloo 3

12 Motivation 4

1.3 Description. 7

1.3.1 Othello Game Framework 7

1.3.2 Artificial Neural Network Population 7

2 Related Work 9

2.1 LiteratureReview 9

2.1.1 Arthur Samuel’s Checkers Player. 9

212 Chinook 9

213 JAGOo 10

214 BILL e 10

215 Logistello 11

216 Anaconda 11

2.1.7 Moriarty and Miikkulainen 11

2.2 ThisProjectinContext 12

3 Design 13

3.1 Representinga Gameof Othello., 13

311 GameFramework 13

3.1.2 TheOthelloBoard 13

313 ThePlayer 14

314 Moves 14

3.1.5 Evaluation Functions 15

3.2 Artificial Neural Network 15

3.2.1 ActivationFunctions L0 16

322 Design e 17

323 AGoodPlayer? 19

CONTENTS CONTENTS
3.3 TheEvolutionProcess 19
331 RankingSystem 20

3.3.2 Mutation Algorithm 20

333 Benchmarking. 21

3.4 Game Tree Expansion. 21

4 Implementation 22
4.1 Programming Language 22
42 ClassOverview it it 22
421 Othellojava o o 22

422 OthelloPlayerjava 23

42.3 OthelloPlayerComputerjava 23

424 OthelloPlayerHumanjava 23

425 EvaluationFunctionjava 24

42.6 GreedyEvaluationjava 24

42.7 RandomEvaluationjava 24

42.8 NNEvaluationjava 24

429 OthelloBoardjava. 24

4210 OthelloGameTreejava and GTNodejava 25

4.3 Timekeeping and General Comments 26
44 Testing e 27
44.1 Problems and their Solutions 27

45 Results 28

5 Evaluation 31
51 Conclusions e 31
5.2 Improvements and Possible Extensions 31

6 Bibliography 33

1 INTRODUCTION

1 Introduction

1.1 Othello

Othello is a two-player game which has existed in its current incarnation since
the 1970s, and was popularised in Japan. The game was heavily based on
Reversi, a game developed in the late 19th century by two Englishmen.!

The game is played on an 8 x 8 board, which is usually green. All playing
pieces are identical and reversible, with one side black, and the other white.
Pieces are usually referred to as black or white, according to the side showing
face-up —this convention is adhered to throughout this report. The starting

board configuration is shown in figure 1, below.

Figure 1: Initial Othello board configuration

On a player’s go, they must place one piece of their colour on the board, in a
square which encloses one or more pieces of the opponent’s colour between
one or more of their own, horizontally, vertically, or diagonally. All these en-
closed pieces are then ‘captured’, whereby they are turned over to show the
opposite colour. If a player cannot make a legal move, they simply miss their
go. The game ends when there are no legal moves available for either player;
this can be when the board is filled, when one colour is completely eliminated,
or simply that no empty square can be used to capture pieces of either colour.
The winner of the game is the player with the most pieces of their colour on
the board at the end of the game.

IThe only two notable differences between Reversi and Othello is that Reversi had no starting
board configuration, i.e. the players could place their first pieces wherever they chose, and that
each player had only a fixed number of pieces each, as opposed to the pool of pieces used in
Othello. If one player ran out, the remaining player was entitled to play the remainder of their
pieces.

1.2 Motivation 1 INTRODUCTION

1.2 Motivation

Until fairly recently, many board game playing “artificial intelligence” sys-
tems” were artificial only in the sense that their decision making process was
not taking place within a human brain. Any tactics and strategies needed to be
hard-coded by the programmer. Clearly, reliance on known strategies means
that an Al can only be as strong as the strongest human player —likewise it is
not exhibiting its own intelligence: it merely blindly follows the rules which its
programmer has set down for it. Other Als had been developed which learned
on their own, however in the majority of cases, these Als were told by their pro-
grammer which features of the game were important, and these in turn were

based on human-developed strategies.

Human knowledge has an unfortunate tendency to go hand-in-hand with hu-
man error, and absolute reliance upon it is not always advisable. This was
exemplified beautifully in August 1992 in a checkers® match between checkers
world champion Dr. Marion Tinsley and Chinook, a computer checkers player.
In the fifth game played, Chinook made a move based on one “taken from one
of the major books on the checkers openings”[12] and then went on to lose. The
author of the book later admitted that the inclusion of that particular move was
erroneous|12], leading to the conclusion that even experts should not be con-
sidered to be infallible.

Rather than relying on existing knowledge of a game, perhaps every position
in a game can be analysed to determine absolutely which move is the best
to make. Many simple games can be ‘solved” (by determining whether any
given position leads to a win, lose, or draw) by completely expanding their
respective game trees; that is, every possible game state which can be reached
is examined, and assigned as a winning, losing, or drawing position. Assum-
ing the game had been solved, writing an Al to play it would be trivial —the
game could be won simply by moving into a ‘win’ position on every turn, or a
‘draw’ position, should ‘win’ not be available. In an ideal world, the game tree
of Othello would be completely expanded as part of this dissertation, to allow
the creation of a ‘perfect’” AL. Unfortunately, the game tree complexity of Oth-
ello has been estimated at approximately 1058[1]. Even with the (extremely)
optimistic target of reaching one board state per nanosecond, expanding the
entire game tree would take in the order of 10*! years. The age of the universe
is currently estimated as being around 14 billion years. To put things into con-

Zhereafter referred to as Als
3generally known as draughts in the UK

1.2 Motivation 1 INTRODUCTION

text, expanding the entire game tree of Othello at would take in the region of
10,000,000,000,000,000,000,000,000,000,000 times the current age of the universe.
Clearly this approach is unfeasible.

One way to develop a computer-based Al which has the potential to beat even
the best humans is by developing an algorithm which ‘learns’ on its own with-
out any human input, beyond an indication of what is or is not a legal move,
and whether or not a completed game has been won, lost, or drawn. An al-
gorithm which performs in this manner may discover as-yet unknown tactics,
particularly if these involve counterintuitive aspects. Human players tend to
learn by copying the strategy of more experienced players, however this does
not often lead to the discovery of novel modes of play. An Al which learns only
on the basis of its win/loss ratio and does not rely on mimicking other players
therefore has an inherent advantage as it can develop its own strategies and

tactics.

Historically, the use of self-learning artificial neural networks as board game
Als has always been overshadowed by those Als which are taught entirely
by their programmer. This is perhaps due to the large amount of processor
time needed for a neural network to evolve to a sufficient level —in fact in [9],
Arthur Samuel states that he specifically avoided the use of a neural network
approach for his checkers program, citing the impracticality of this approach
given the technological resources available at the time. Since Samuel wrote
this article, computing power has increased significantly, and its cost dropped
dramatically, allowing development of a neural network to be possible on a
home PC and within a reasonable timescale. What may have taken months

only a few years ago may now be achieved in a matter of days.

It is for the above reasons that the author has decided to create an Al to play
Othello using a self-learning artificial neural network. Othello was chosen in
particular, since its rules are simple, the branching game tree is reasonably
small, and every game is finished after at most 60 moves. Chess, by com-
parison, is exceptionally complex, especially when taking into account the lack
of homogeneity amongst its playing pieces; chess’s game tree complexity has
been estimated around 10'23[1]. Checkers was considered, but discounted
since its rules are more complex than those of Othello, which would be likely
to steer the focus of this dissertation away from creating an effective neural
network-based player, and toward simply implementing the rules of check-
ers. The game tree of checkers is also complicated in the latter stages of the
game, once pieces become kings and are able to retrace their steps. Othello

was thought to provide a good balance between game tree complexity (i.e. not

1.2 Motivation 1 INTRODUCTION

trivial, but not too complex) and rule complexity.

1.3 Description 1 INTRODUCTION

1.3 Description
1.3.1 Othello Game Framework

An Othello game framework is to be developed which supports an interface
for two players to compete. The framework should act as referee, ensuring
only legal moves may be made, and should alter the board state accordingly
after every move is made. It should also store various information regarding
the state of a game, such as which player’s turn it is and the current state of the
board. The framework should prompt players to make a move when it is their
turn, providing the player a list of legal moves from which to pick. For the pur-
poses of convenience, there should also be a way of graphically describing the
current state of a game, so that a human player may either observe or partake

in the playing of a game.

1.3.2 Artificial Neural Network Population

It is intended that all neural networks will play one another twice (alternating
which has the first move) and in addition, all will play several times against a
‘random mover’, which is intended to act as a control sample, so the progress of
each generation of neural networks can be monitored. Once all these matches
have been played, the networks will be ordered according to their total wins,
losses and draws, against one another (i.e. the games versus the random player
will not be taken into account for this) and the poorest players eliminated.

It is intended to store a sample (if not all) of every generation of neural net-
works so that the progress of their evolution can easily be followed and moni-
tored. A mutation algorithm will need to be derived to actually allow the net-
works to evolve —this will need to be carefully crafted such that neither too
much modification is made nor too little. It is possible that some sort of ‘cross
breeding” algorithm will be devised to combine the features of the best playing
networks, and it is likely that this will be combined with a small amount of

random mutation to ensure continual change.

In addition to a strong evaluation function, various other techniques exist which
can strengthen the performance of a game-playing Al. For example, expand-
ing the game tree by the depth of even a few moves can provide a considerable
advantage. Methods of reducing the needed expansion of the game tree, such
as af-pruning can speed up this process, as the subtrees can be rather large (as

1.3 Description 1 INTRODUCTION

noted in section 1.2).

The use of an opening book and an endgame database is not intended for in-
clusion within this project. Using these (in the opinion of the author) rather de-
feats the object of developing a purely positional evaluation function. The em-
phasis of this project is on the development of an Othello player which learns
by itself, rather than simply the development of an expert player.

2 RELATED WORK

2 Related Work

2.1 Literature Review

In this section, a selection of related works are reviewed and their relevance to
this project discussed. Most original work in this field is related to checkers,

but some Othello players are also discussed.

2.1.1 Arthur Samuel’s Checkers Player

The first notable self-learning game playing Al was developed in the 1950s by
Arthur Samuel (see [9]), whose program was developed specifically to play
checkers. His work in this field was groundbreaking — previous artificial in-
telligences required the parameters of their evaluation function to be painstak-
ingly tweaked to perfection by hand. Samuel’s checkers player was unique in
that it adjusted its own parameters as it gained experience of more and more

games.

Samuel identified several features of a checkers game which he regarded as
being correlated with a win, such as the piece ratio, or the number of moves
available to either player. Whilst his method was revolutionary, Samuel had
unwittingly imparted his perspective of a checkers game on his program; the
very fact that he had identified these parameters to his program meant that its
learning method was inherently based on how the game was already played

by humans.

Samuel was aware of the shortcomings of his solution, however he cited the
inefficiency of neural networks as his reason for producing “the equivalent of
a highly organised network which has been designed to learn only specific
things” instead.

2.1.2 Chinook

Chinook was another checkers program, developed in the late 1980s and early
1990s. This relied on “deep search, a good evaluation function, and endgame
databases”[10] to play, and also used an ‘opening book’, which contained open-
ing moves taken from checkers literature which were considered to be strong.

2.1 Literature Review 2 RELATED WORK

Similarly, the program’s evaluation function was trained using documented
games played by grandmasters, and thus Chinook mimicked their playing
style. Whilst this certainly ensured that Chinook could beat the majority of
players, it struggled when it came to playing the very top checkers players of
the time. Whilst it did not often lose a game against very strong players, it
similarly did not often win, and many games remained draws. Chinook was
beaten by very narrow margins by both Dr. Marion Tinsley (regarded as the
greatest checkers player who ever lived, who reputedly lost a total of 5 games
in the period 1950-1992[11]) and Don Lafferty, the world’s second best player
at the time.[11]

As mentioned in section 1.2, Chinook famously lost a match against Tinsley in
1992 due to an erroneous set of opening moves stored in Chinook’s opening
book. In [10], Schaeffer states that it was well known by the developers that
Chinook’s opening book was its weak point, and that work was being carried
out to remedy this.

2.1.3 IAGO

IAGO was developed in the early 1980s, and was the first notable program
which played Othello at a non-trivial level. Its evaluation function was con-
structed in a similar way to that of pre-Samuel Als (see section 2.1.1) in that it
was entirely hand crafted, and had no self-learning abilities[2, &].

2.14 BILL

BILL was the first program to beat IAGO —in fact, it did so in spectacular
fashion, beating IAGO in every match played, with only 20% of the thinking
time.[2] Unlike IAGO, in addition to its evaluation function, BILL had a built-in
learning function: it stored every game position it encountered, and assigned
them as winning or losing, according to the outcome of the game. Using these,
it learned to recognise patterns of winning and losing positions, and altered its
evaluation function accordingly. One drawback of using this method was that
no non-expert games were used to train BILL, and therefore against a novice
player BILL did not have such an edge.

10

2.1 Literature Review 2 RELATED WORK

2.1.5 Logistello

Logistello was released in 1994[2], and is currently one of the strongest Othello-
playing programs. Whilst it is self-learning, it does not identify features which
it considers to be important — these are still specified by its programmer. How-
ever, what Logistello does do, is to decide how combinations of features are im-
portant — that is, unlike BILL, which treats every feature separately. Addition-
ally, Logistello uses both an endgame database to ensure a perfect endgame,
and an opening book to sway the odds into its favour from the outset.

2.1.6 Anaconda

Anaconda is another checkers player, developed in the late 1990s; its evalua-
tion function was developed by evolving a population of artificial neural net-
works. It was provided with no knowledge of how to play checkers, besides
being supplied with the rules, and evolved to the extent where it had identi-
fied its own features which it considered to be correlated to a win. After 840

generations, Anaconda had evolved to a level considered to be excellent[3].

2.1.7 Moriarty and Miikkulainen

Moriarty and Miikkulainen[”] developed an Othello player in a similar man-
ner to Anaconda, and in a similar manner to the way in which this project is
intended to be developed, in that no strategies or tactics were provided to the
program. The program was unusual in that it did not expand the game tree
at all, beyond looking at the currently legal moves, and despite this, it inde-
pendently developed an “advanced mobility strategy”[7], which Moriarty and
Miikkulainen state was discovered only once, and not, like many strategies,
discovered in several places independently. They go on to state that the redis-
covery of this method was “a significant demonstration of the potential power
of neuro-evolution”[7] and that mobility strategies are notoriously difficult to
learn, particularly as they involve counterintuitive aspects, such as minimising
your own piece count during the middle-game. This, however, restricts the le-
gal moves available to the opponent, thus providing an advantage as they are
forced to make ‘bad’ moves.

It is stated in this paper that their population of neural networks was evolved
initially against a random moving opponent, and then later against players af-

11

2.2 This Project in Context 2 RELATED WORK

forded with o search capability. The neural network population then “evolved
to exploit their initial material disadvantage and discovered the mobility strat-

egy”.
Evolving a position evaluation function in a manner akin to Moriarty and Mi-

ikkulainen’s would be an ideal aim for this project.

2.2 This Project in Context

It is intended to follow the same route as Anaconda and Moriarty and Miikku-
lainen, in that the population of neural networks will not be provided with any
prior knowledge of Othello. Unlike Logistello, an opening book and endgame
database will not be used, as these will not help the program achieve ‘intelli-
gence’, however some game tree evaluation is likely, but certainly nothing on
the scale of Chinook.

12

3 DESIGN

3 Design

3.1 Representing a Game of Othello
3.1.1 Game Framework

The first major milestone in this project is the implementation of a comput-
erised Othello framework. As stated in section 1.3.1, this will need to be made
aware of the rules of Othello; i.e. it must be able to recognise legal moves, and
to alter the board state correctly when a player has made their move.

The most base element of an Othello game is the board itself —intuitively,
therefore, this is the best place to start.

3.1.2 The Othello Board

An Othello board is made up of 64 separate spaces, each of which may be
in one of three states: occupied by a white piece, occupied by a black piece,
or empty. It was decided to represent the board as an array of 64 variables.
Initially, this array was intended to be two-dimensional (8 x 8), as this closely
parallels a real board, and allows co-ordinates of a board space to correspond
directly with array indices. After some deliberation, however, it was decided
to use a one-dimensional array, since the current board state is likely to be
used by many processes, and in some cases will be required to be modified.
Java provides an Array.clone () method; however this only works correctly
with one-dimensional arrays* (although it would be trivial to implement such
a method). Also, the input layer of the neural networks (see section 3.1.5) is
made up of a one-dimensional array of 64 values. In the interests of simplicity,

therefore, a one-dimensional array was chosen.

Since each position on a board has three possible states, it was decided to make
the board state array up of ints, with 0 representing an empty position, 1 rep-
resenting a position occupied by a black piece, and -1 representing a position

occupied by a white piece.

4Java’s multidimensional arrays are not truly multidimensional — they are actually arrays of
arrays, and therefore Array.Clone() only clones the first dimension.

13

3.1 Representing a Game of Othello 3 DESIGN

3.1.3 The Player

A two-player game such as Othello clearly requires some way for a player
(computer or human) to interact with the game, both to evaluate the board
state, and to select a move to play. It is therefore envisioned that a player ob-
ject will be defined, such that a game takes two player objects, and alternately
requests each player object for a move, should a legal move for that player
be available. Whether the player is human or computer, the game framework
should ideally treat them indistinctly. The best way to do this is to define a
generic player interface, which human and computer players can implement.
A computer player, for instance, when prompted for a move, will need to use
some form of evaluation function (see section 3.1.5) to select a move, however a
human player will need to be prompted to enter the move they wish to make’,
using the keyboard or mouse. In either case, once the player has selected a
move, an int corresponding to the chosen board position can be returned,

and the board state updated accordingly.

3.1.4 Moves

In order that the player need not distinguish legal moves from illegal, it is in-
tended that when requesting a move from a player, they will be provided with
a list of legal moves, in the form of an array of 64 boards. Entries in this array
which are null represent that moving in the corresponding positions is illegal;
entries containing a board object show what the new board state would be if
the player were to move in the corresponding position. This has the advantage
that the player does not need to be aware of the actual mechanics of the game,
and also eliminates any risk of the player and the game framework differing
in their opinions of what the updated board position should be®. Additionally,

the player does not waste time needlessly evaluating illegal moves.

Various (slightly vague) mentions have been made so far regarding updating
of the board state after a move has been made. Clearly, this is a pivotal element
of the Othello game framework. Before the act of updating the board state
following a given move can even be considered, the legality of the move must
first be established. If the board position requested to be played in is not empty,
the move is illegal. If it is empty, then each of the eight directions emanating
from the position must be checked to see if pieces can be captured. The move is

5 A human player effectively acts as their own evaluation function, however for the purposes of
programming, it is easier to make a clear distinction between computer and human players.
®For instance, in the case of programmer error.

14

3.2 Artificial Neural Network 3 DESIGN

legal if at least one piece may be captured in at least one direction. Armed with
information on which directions pieces may be captured in, the board state
may now be updated, initially by placing a piece of the player’s colour in the
requisite position, and then by recursively ‘flipping pieces’ (i.e. negating their
values in the board state array) in each valid direction, until another piece of

the player’s own colour is encountered.

3.1.5 Evaluation Functions

In the context of this project, an evaluation function simply takes a board state,
and somehow converts it into a single numeric value, representing the ‘good-
ness’ of the state. A computer player has an evaluation function, and uses this
to evaluate the result of each legal move it can make. The move yielding the
highest” value is selected. In the case that two or more moves yield the same,
highest value, the player simply picks one of these moves at random. Three dif-
ferent evaluation functions are intended to be developed: the random mover,

the greedy mover, and the artificial neural network mover.

Implementing the random mover is trivial: since the player will choose ran-
domly from equally weighted moves, the random mover simply needs to as-
sign the same value regardless of the board state.

The greedy mover is defined as favouring board states in which its piece count
is highest. Again, this is reasonably simple to implement — the greedy mover

can just return the ratio of its pieces to its opponent’s.

The artificial neural network mover is somewhat more complex, and is ex-

plained in detail in the following section.

3.2 Artificial Neural Network

Artificial neural networks are made up of a collection of nodes (or neurons)
and links between them. Each node takes a numeric input, and provides a
corresponding numeric output, based on its threshold and activation function.
Outputs of nodes may be linked to the inputs of others; each link is directional,
and has an associated weight. This weight is used to alter the value travelling
along the link, most commonly by being used as a multiplier.

"The choice of a high value representing a good move is arbitrary — equally, the lowest value
could be defined as ‘good’.

15

3.2 Artificial Neural Network 3 DESIGN

3.2.1 Activation Functions

These networks can be used to represent complex, nonlinear functions, due to
the nonlinear nature of their activation functions. The most commonly used

activation functions are the sigmoid function,

1
flz) = Tte=
and the hyperbolic tangent function,
e2r — 1

The graphs of these functions are shown in figures 2 and 3.

Figure 2: Sigmoid function

Since the inputs to the neural network will be made up entirely of 0, 1, and
—1 (values taken directly from the board state array) it was decided that the
hyperbolic tangent function would be used. This is due to the fact that it is
an odd function®, and thus rotationally symmetric about the origin, paralleling
the inputs.

8 An odd function is defined as follows: for a function f(z), fis odd if —f(z) = f(—=z) for all x
in the domain of f.

16

3.2 Artificial Neural Network 3 DESIGN

tanh(z) ,

,
1 L—
3 2 -1 1 2 3 7
/ 1
—1

Figure 3: Hyperbolic tangent function
3.2.2 Design

The form of artificial neural network intended to be used in this project is
known as a multilayer perceptron, which is a type of feedforward network’.
Multilayer perceptrons are composed of an input layer of nodes, one or more
hidden layers, and an output layer. Each of these layers is fully connected to
the successive layer — that is to say, there is a link from every node in one layer
to every node in the next.

The universal approximation theorem [5] states that any continuous function
that maps an interval of real numbers to some output interval of real numbers
can be modeled arbitrarily closely by a multilayer perceptron with just one
hidden layer. Thus it was decided to design the network as follows:

e Input layer, comprising of 64 nodes, fully connected to:
e Hidden layer, comprising of 42 nodes, fully connected to:

e Output layer, comprising of one node.

The size of the hidden layer was chosen on the basis of a rule of thumb that it
should be approximately 2 the size of the input layer. The output layer consists
of only one node, since only one single numeric value is required as output.

The resulting neural network resembles that shown in figure 4.

As shown in figure 4, with 64 nodes in the input layer and 42 in the hidden
layer, a total of 2688 edges (links) are required to fully connect layers 1 and
2. These are represented by 2688 weights: one per edge. Similarly, the 42

9Feedforward here refers to the acyclic nature of the layout of the neural net.

17

3.2 Artificial Neural Network 3 DESIGN

Input Hidden Output

[Fully connected]

./ -

2688 links 42 links
6 4 (64x42) 4 2 (42x1) 1
Figure 4: Artificial Neural Network Design

graph edges between layers 2 and 3 are represented by 42 weights. In addition
to these weights, each of the 42 nodes of the hidden layer requires a threshold
value; this effectively scales the function along the z-axis, providing a smoother
or sharper curve. The weights and thresholds are applied as follows.

The output of each node in the input layer is the same value as is input. Since
the input values are discrete, an activation function is superfluous, and simply

applying a weight along each output edge performs adequately.

The output of each node in the hidden layer is defined as
output = U(p,t)

where .
et —1

V(p,t) = P

and

n—1
Y= E ZiWi .
=0

Here, V is the activation function, ¢ is the weighted sum of all n (64) inputs (x
is the input value and w is the weight associated with the corresponding edge),
and t is the threshold value associated with the node.

The output of the node in the final layer is simply the sum of its weighted
inputs. Since there is only one node in the layer, it was decided that there was

18

3.3 The Evolution Process 3 DESIGN

no need to apply an activation function. The output can therefore be defined

as

n—1
output = Z €T, W;
i=0

where z is the input value, and w the weight corresponding to the associated

edge, with n inputs (in this case 42).

These values of weights and thresholds will be stored in three arrays of doubles:
one holding the weights between layers one and two, one holding the thresh-
old values for layer two, and one holding the weights between layers two and
three.

3.2.3 A Good Player?

The precise values of the weights and thresholds required to make a good
player is unknown —indeed, achieving this is one of the main focuses of this
dissertation. Initially, there is no better method of setting these values than
simply assigning random numbers. The intention, therefore, is to do so, as-
signing random numbers from a Gaussian distribution, with mean zero and
standard deviation 1. Using a Gaussian distribution theoretically allows for
any number, however, statistically, the vast majority of values produced'’ will
be within three standard deviations of the mean. Discovering which configu-
rations of weights and thresholds make an effective player will effectively be
left to chance, as discussed in the following section.

3.3 The Evolution Process

It is intended to maintain a population of 20-30 neural networks as described
in the previous section. In the first instance, all the weights and thresholds
will be randomised using the aforementioned Gaussian distribution random
number generator, resulting in a population of players whose ability is likely
to vary from reasonably good, to reasonably bad. This random population may

be considered as the first generation of many in the evolutionary process.

10 Approx. 99.7%

19

3.3 The Evolution Process 3 DESIGN

3.3.1 Ranking System

Once this population of neural networks has been established, there must be
some method whereby it can be decided which are better at playing Othello
than others. It has been decided that a form of tournament system will be used,
in which each neural network plays each other twice, having the first move in
one instance, and the second in the other. Each network will receive a score
according to the output of each game —plus one point in the case of a win,
and minus one in the case of a loss. No points will be added or subtracted in
the case of a draw. After these games, the networks will be ranked according to
their scores, and the bottom-scoring half of the population will be eliminated.

3.3.2 Mutation Algorithm

To compensate for this elimination (and indeed, to actually perform the process
of evolution) each network in the top-scoring half of the population will be
duplicated; this duplicate replacing one of the eliminated nodes. To allow the
population to ‘evolve’ slightly every generation, each of these duplicates will
have each of its weights and thresholds altered by a random amount, in the
following manner.

Xn+1=Xn+p-T(0,1)

where n represents the current generation, X is the value to be mutated (either
a weight or a threshold), p is the mutation factor, and I'(0, 1) is a function which
produces a random number from a Gaussian distribution with mean zero and
standard deviation 1.

The inclusion of i, the mutation factor is to control the rate of mutation. Java’s
Random object only produces Gaussian values with a mean of zero and stan-
dard deviation of one. This on its own would elicit far too high a rate of mu-
tation'!, therefore the mutation factor is used to (in effect) reduce the standard
deviation of the Gaussian function, producing a narrower bell curve. It was
suggested that a mutation factor of 0.05 would be a sensible value to use.

1A rate of mutation which is too small would lead to very slow evolution; conversely too large
a rate may lead to values which have little relation to their previous incarnations, effectively just
producing a random number. The mutation factor must be chosen carefully, striking a balance
between speed and accuracy.

20

3.4 Game Tree Expansion 3 DESIGN

3.3.3 Benchmarking

In order that it can be inferred that the population of neural networks is actu-
ally evolving into a better player, some form of benchmark test must be used.
Since the neural networks evolve by playing against each other, it is difficult
to tell simply from these games that . For this reason, it was decided that the
top-scoring neural network in each generation would play 1000 games versus
a random moving opponent (see section 3.1.5), using a similar scoring method
to that of the tournament system. Theoretically, therefore, a ‘better’ neural net-
work should win proportionately more games versus a random mover thana
‘worse’ one. These scores will be output to a .csv file!? so that the progress of
each generation of neural networks can be tracked and plotted to a graph.

3.4 Game Tree Expansion

Whilst not intended for use during the evolutionary stages of the project, ex-
pansion of the game tree is an important feature of many board game playing
Als. Use of lookahead, even by only a few moves, offers considerable advan-
tage, especially when used in conjunction with minmax evaluation, whereby
the player may seek to minimise their maximum possible loss. The efficiency
of the minmax evaluation can be improved by employing a3 pruning. This al-
lows the expansion of certain subtrees to be halted, if it can be proved that
the move is worse than one previously examined; in many cases, this will
vastly decrease the space complexity of the game tree produced, and will, in
the worst-case scenario, produce the same game tree as a minmax evaluation.

An a3 search tree algorithm will be produced, which will enable any computer
player to use lookahead to an arbitrary depth'®, which can be used in the later
stages of the project, for single player games, once a neural network which can
play Othello to a reasonable level has been developed.

12A comma separated variable file, readable by many common spreadsheet packages.
13There will, however, clearly be constraints based on reasonable use of time and memory.

21

4 IMPLEMENTATION

4 Implementation

4.1 Programming Language

The only language in which the author currently feels comfortable program-
ming such a large project as this is Java. In an ideal world, C++ would have
been used'?, due to the various speed and efficiency advantages it offers. Nev-
ertheless, Java was the language chosen for this project—its strong object-
oriented nature does lend itself to the construction of well designed programs,
and its inherent cross platform nature means that almost any code can run on
any machine with a JVM installed.

4.2 C(Class Overview

Figure 5 displays the basic relationships between each Java class. The main
method is contained within the Othello class. Each other class represents a
concrete implementation of an object, with the exception of OthelloPlayer
and EvaluationFunction, which are interfaces to allow different imple-
mentations of different types of players and evaluation functions respectively.
It was intended to produce a more detailed discussion of each class for inclu-
sion in this section, however the code is quite well commented, with reason-
ably intuitively named methods and variables, and in most instances, classes
are structured as described in the design section. Suffice to say, what follows is

a brief overview of each class and its function within the project.

421 Othello.java

This class contains the main method. Various command line arguments allow
different functions to be performed. For instance, running java Othello sp

initiates a single player game.

41n an ideal world, C++ would have been taught as the staple language of the first year Com-
puter Science course, and Java offered as an optional second year module, as opposed to the other
way around. .. however, this is probably not the place for such musings!

22

4.2 Class Overview 4 IMPLEMENTATION

Othello

................. = | Othell ard 2 e T
= =)
: <<interface>> N
OthelloPlaver |<-
OthelloGameTree <] \7

OthelloPlayerComputer OthelloPlayerHuman

GTNode s
D
L > <<interface>> :
e = | EvaluationFunction |< '
SN AV
GreedyEvaluation NNEvaluation RandomEvaluation

Figure 5: Class Diagram

4.2.2 OthelloPlayer.java

This is an interface implemented by OthelloPlayerComputer and OthelloPlay-
erHuman. It defines the int getMove (OthelloBoard[] moves, int colour)
method, which is implemented separately in the human and computer player

objects.

4.2.3 OthelloPlayerComputer.java

The constructor is of this object takes an EvaluationFunction object, and an in-
teger value defining its game tree search depth beyond the next move. getMove ()
utilises the evaluation function on an a3 pruned game tree expanded to the
requisite depth.

4.2.4 OthelloPlayerHuman.java

The constructor of this object takes a String as input, which can be used to set
the player’s name, for display during games. getMove () requests input from

23

4.2 Class Overview 4 IMPLEMENTATION

the user via the UserInput object. (This was provided for use in first year
during the G51PRG module, and it has been assumed it is OK to use here.)

4.2.5 EvaluationFunction.java

This is an interface implemented by the various evaluation function subclasses
(GreedyEvaluation, RandomEvaluation, and NNEvaluation). It defines the
double evaluate (OthelloBoard board, int colour) method, which
is implemented separately by each subclass.

4.2.6 GreedyEvaluation.java

This implements the evaluate () method defined in the Evaluation function
interface by simply returning the ratio of friendly to enemy pieces, thus favour-
ing positions with greater proportions of ‘friendly” pieces.

4.2.7 RandomEvaluation.java

This implements the evaluate () method defined in the EvaluationFunction
interface by returning the value 1 regardless of the board state. The Othel-
loPlayerComputer class, which makes use of evaluation functions, randomly
picks from the best available moves, in the case that two or more moves have

the same, highest heuristic value.

4.2.8 NNEvaluation.java

This implements the evaluate () method defined in the Evaluation function
interface in the manner described in section 3.2.

NNEvaluation also has a method named dumpToDisk() which, when called,
writes the threshold and weight values to disk, for the purposes of backup.

4.2.9 OthelloBoard.java

This is the class which contains most of the implementations of the rules of
Othello (with the exception of maintaining state of which player’s turn it is,

24

4.2 Class Overview 4 IMPLEMENTATION

which is performed by the playGame() method in Othello.java). It is this class
which states whether a given move by a given player is legal, provides a list of
legal moves for a given player, provides information on the state of the game
(such as a given player’s piece count), and actually performs the act of up-
dating the board state when a move is chosen by a player. The current board
state may be output to the console in the form of an ascii board (by calling the

method printTextBoard ()), as shown in figure 6.
012 3 45¢67

0] *
1]
2| 00
3
4| *
5|
6|
71

* X X %X O %

Figure 6: Sample of ascii board representation

4210 OthelloGameTree.java and GTNode.java

These are the classes responsible for creating and expanding game trees. Oth-
elloGameTree.java creates trees from GTNode objects, which form a doubly-
linked'® tree. GTNodes contain an OthelloBoard object, on which the ex-
pansion of their children is based, and state to define the node as being ‘Max’

or ‘Min’ for the purposes of af pruning.

The two notable methods in OthelloGameTree java are

expandwithAB (GTNode node, int colour, int depth, EvaluationFunction ef)
which (intuitively) expands a GTNode with o8 pruning to a certain depth, us-

ing a certain evaluation function, from the point of view of a certain colour of

piece (i.e. a player); and, print XML () which prints the structure of a game tree

as XML to the console, by traversing it in a depth-first manner. Attributes such

as whether a node is min or max, and the assigned heuristic value of the node

may be included. With a bit of trickery using XSLT, Troff and pic (as taught in

the G52DOC module) this XML can be converted into a visual representation

of the game tree. A sample trees is shown in figure 7.

15] e. traversable in either direction

25

4.3 Timekeeping and General Comments 4 IMPLEMENTATION

oo AU oot oo HOURY 2o oo DOV oo oo OO

Figure 7: Game tree of Othello, expanded from initial board configuration by a
depth of 3

4.3 Timekeeping and General Comments

The programming of the initial Othello framework actually took a surprisingly
small amount of time —indeed, getting to the stage where a two player game
could be played only took a matter of a few hours. The introduction of the two
simple evaluation functions, GreedyEvaluation and RandomEvaluation,
allowing single player games versus the computer (or for the computer players

to play each other or themselves) took only a short time more.

Methods of game tree expansion took a little longer. Firstly, a method was
written which expanded the game tree (using depth-first search), and then ret-
rospectively applied a given evaluation function to the leaf nodes, and propa-
gated these values up the tree in a Minmax fashion. Whilst this did work, it did
not lend itself well to the implementation of a5 pruning, since this requires that
leaf nodes are evaluated and their values propagated upwards whilst the tree
is still being expanded. Perfecting this method, and checking it was working
correctly was reasonably time consuming: in the order of a few weeks.

Developing the neural network-based evaluation function also turned out to
be a lot simpler than anticipated. Once it had been established that the prob-
lem essentially boiled down to enumerating the hidden layer (for each node
in the hidden layer, summing all the weighted inputs, and then applying the
activation function to this number), then enumerating the output layer (in a
similar manner, using this time the enumerated values of the hidden layer)
and then returning this value, the whole evaluation function was developed
remarkably quickly. This did seem somewhat anticlimactic—it had been an-
ticipated that developing the neural network evaluation function would be a

long and arduous process. It turned out that the arduousness was yet to come.

The element which took longest was undoubtedly the actual stage of evolution.
This was not only due to the computationally-intensive nature of the process,
but also because there were a fair few false starts in which no noticeable evo-
lution was observed. It took several weeks, a lot of head scratching, and a fair
amount of swearing at the computer to finally iron out all the problems (see
section 4.4.1) but once this had been done, significant evolution was observed

26

4.4 Testing 4 IMPLEMENTATION

after the first few hundred generations.

4.4 Testing

The modularity of the system design lent itself well to continuous testing as
each component was programmed. It was reasonably easy to ensure that ev-
ery component behaved as expected, and without any side effects, during the
development process. There was one major bug present in the version of the
program which had been, up to that time, considered to be ‘final’. It is covered

in detail in the next section.

4.4.1 Problems and their Solutions

The one major problem encountered was initially only discovered after the
‘evolution’ phase had been in progress for several hundred generations, with-
out any notable signs of progress'®.

After being completely unable to fathom what was going wrong (every method
was checked repeatedly, and no major errors, logic or otherwise, were found)
it was decided to make a copy of all the code, and to modify this copy to play
Noughts and Crosses instead of Othello, in the hope that this simpler game
would make the bug more obvious. Noughts and Crosses’s game tree com-
plexity is in the order of 10°, as opposed to Othello’s estimated 10°8. Its game
tree can therefore be expanded totally with relative ease.

Converting the main classes to Noughts and Crosses was a reasonably straight-
forward process. A new evaluation function was created, called ‘Perfect Evalu-
ation’ which relied on total expansion of the game tree, assigning higher values
to games won after fewer moves, and lower values to games lost after fewer
moves'”. This was played against in single player mode — the expectation was
that the computer player utilising the PerfectEvaluation function would

always win or draw. In fact, the opposite was true.

Whilst playing the game, the heuristic value that the PerfectEvaluation
assigned to each state was displayed on the screen. In many cases, these val-
ues appeared to be incorrect, for instance, no positions ever appeared to be

16For a description of measures of progress, see section 3.3.3.
17A winning configuration was assigned the value 1+ Se, and a losing configuration —(1 4 S¢),
where S. is the number of empty spaces. A draw was assigned the value zero.

27

4.5 Results 4 IMPLEMENTATION

assigned a negative value, even when moving in this position would have re-
sulted in a loss for the computer. Tracing the logic through the program, it was
discovered that the slightly convoluted method by which an evaluation func-
tion is informed from which player’s perspective it should evaluate the board
state was buggy, resulting in a win from either player being considered ‘good’.
This was fixed simply by the insertion of a couple of minus signs.

After this, the computer played reasonably well, blocking wins from the hu-
man player, up until the point where it had the opportunity to make a winning
move itself, where in every case, it appeared to make every possible attempt to
avoid winning. Whilst initially, this was quite gratifying, it rather spoiled the
effectiveness of the evaluation function. This transpired to be a bug in the a3
search tree expansion. When the method was written, it was assumed that the
head of the tree would always be a ‘Max’ node, thus the non-recursive method
(which calls the recursive method) always assigned the value of the maximum
child to the head of the tree. Unfortunately, this is not how the game tree search
algorithm was being used. Rather than creating one game tree (wWhose head
would be a ‘Max’ node) the code creates as many game trees as there are legal
moves —one for each possible move, where the head of each tree represents
the state of the board after the move has been made. The maximum value of
the head of each of these trees is then used to determine which move to make,
implying that the head of each tree should be a ‘Min’ node. Since every Node
object stores its status as ‘Max” or ‘Min’ in an instance variable, it was triv-
ial to amend the non-recursive a3 method to actually check whether the head
of the tree is ‘Max’ or ‘Min’, and to assign the maximum or minimum value

accordingly.

Subsequently, the PerfectEvaluation did indeed perform perfectly. Each
pair of corresponding Othello and Noughts and Crosses classes were com-
pared with di £ f on the School of CS’s Unix machines, and the above described
logic bugs were resolved in the Othello classes. Once the neural network evo-

lution process was set to work, results were reasonably quick to be seen.

4.5 Results

Figure 8 shows a graph displaying the evolutionary progress of the popula-
tion of artificial neural networks, measured by the benchmarking technique
described in section 3.3.3. This shows the number of games won from 1000
played between the best performing neural network from each generation, and

28

4.5 Results 4 IMPLEMENTATION

a random moving opponent. The neural network player improves markedly
from approximately generation 80, reaching a plateau at around generation
300. Evolution was stopped just after the 800*" generation, as no significant
evolutionary progress had been made for approximately 500 generations. The
dip in the graph towards the end is probably just a local minimum, as occurred
around generations 400 and 700. It should probably be noted that although
the neural network player evolves to win significantly more games versus the
random player, it does not appear to be any better at avoiding draws, which
tend to make up 30—40 of the games each generation.

Whilst the graph does appear to show significant evolutionary progress, it
should be pointed out that since the opponent was a random mover, it can
be assumed that approximately half the moves made were good, and half bad.
Unfortunately, no pre-developed expert Othello playing evaluation function
was available to use as a benchmark. These results are perhaps then nothing
to become foo excited about. Sections 5.1 and 5.2 offer some thoughts on the

further improvement of play.

29

4.5 Results 4 IMPLEMENTATION

=
=
(=
== r
=)
—_—
(=3
o
-1 ~
o
Q
<
L
o}
g
[a)
(=3
o
_ g |
®
T z
<
=
[}
(=3
o
v
@
8 £
- s 5
= ~ -
g 2
S g
© g
B g
= - g £
N =
<
o~
@
<
£
=
=
o
=
=
a

800
700
600
400 -
300
200
100
-100
-200

Figure 8: Graph of scores after 1000 neural network vs. random player
matches, by generation

30

5 EVALUATION

5 Evaluation

5.1 Conclusions

In the discussion section of [7], Moriarty and Miikkulainen state:

Another question to explore in future research is whether networks
can evolve significant play by playing each other. Co-evolving pop-
ulations would preclude the need for a strong, searching oppo-
nent, which is typically the bottleneck in these simulations. Ad-
ditionally, the networks should evolve more general game-playing
strategies since the opponent’s strategy is not constant. A diffi-
cult issue that must be addressed, however, is how to judge per-
formance of one network relative to other networks in the popula-
tion. Since the strength of the opponents will vary, a weak network
may exhibit strong play simply because its opponents were sub-
par. Such fitness evaluation noise could be averaged out by playing
each network against more opponents, however, this would greatly
increase the time needed for evolution.

Just as Arthur Samuel in his 1959 paper ([9]) cited the high computational over-
head of using artificial neural networks to evolve his checkers player, so in
1995 Moriarty and Miikkulainen state that playing their artificial neural net-
works against one another was considered too computationally expensive to
be worth bothering with.

This project has shown that the method Moriarty and Miikkulainen considered
and dismissed has been successful in evolving an Othello player. Clearly, evo-
lution did occur to some extent, and judging by the way the graph in figure
8 levels off, this was to the optimal level achievable by the system configura-
tion. In order to further evolve the neural network population, following in the
path of Moriarty and Miikkulainen —evolving each neural network against a
player afforded a3 search capabilities—is considered as the logical next step
to take.

5.2 Improvements and Possible Extensions

As stated above, the next obvious step to take in order to improve the neural

network population’s playing abilities is to evolve them against another player

31

5.2 Improvements and Possible Extensions 5 EVALUATION

which uses some form of game tree search. The evaluation function used by
this player can simply be that of one of the neural networks evolved thus far. It
would certainly be interesting to see just how far the Othello playing strategy
can be evolved.

One feature of many programs is notably absent from this project —a graphical
user interface. Whilst it would be nice to have the use of a GU]J, it is not really
a crucial element of the project, since games can be perfectly displayed and
interacted with in the console in the form of an ASCII-based interface. Since the
main focus of this project was to evolve an Othello playing evaluation function,
and not to create an Othello game to be released to the masses, it was felt that
the inclusion of a GUI would be given a low priority.

32

6 Bibliography

[1] Louis Victor Allis. Searching for solutions in games and artificial intelli-
gence. Master’s thesis, University of Limburg, 1994.

[2] Michael Buro. The evolution of strong othello programs. In Entertainment
Computing - Technology and Applications, pages 81-88. Kluwer, 2003.

[3] Kumar Chellapilla and David B. Fogel. Anaconda Defeats Hoyle 6-0: A Case
Study Competing an Evolved Checkers Program against Commercially Available
Software. Congress on Evolutionary Computation 2000 (CEC 2000), July
16-19, La Jolla Marriot Hotel, La Jolla, California, USA.

[4] Kumar Chellapilla and David B. Fogel. Evolution, neural networks,
games, and intelligence. Proceedings of the IEEE, 87(9):1471-1496, 1999.

[5] Baldzs Csanad Csaji. Approximation with artificial neural networks. Mas-
ter’s thesis, Faculty of Science, E6tvos Lorand University, Hungary, 2001.

[6] K. Lee and S. Mahajan. A pattern classification approach to evaluation
function learning. Artificial Intelligence, 36(1):1-26, 1988.

[7] David E. Moriarty and Risto Miikkulainen. Discovering complex oth-
ello strategies through evolutionary neural networks. Connection Science,
7(2):195-209, 1995.

[8] P.S. Rosenbloom. A world-championship-level othello program. Artificial
Intelligence, 19(3):279-320.

[9] Arthur L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal, pages 211-229, July 1959.

[10] Jonathan Schaeffer, Joseph Culberson, Norman Treloar, Brent Knight, Paul
Lu, and Duane Szafron. A world championship caliber checkers program.
Artificial Intelligence, 53(2-3):273-290, 1992.

[11] Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin Bryant. Chinook:
The world man-machine checkers champion. Al Magazine, 50:189-226,
1996.

[12] Jonathan Schaeffer, Norman Treloar, Paul Lu, and Robert Lake. Man ver-
sus machine for the world checkers championship. Al Magazine, 14(2):28—
35,1993.

33

	Introduction
	Othello
	Motivation
	Description
	Othello Game Framework
	Artificial Neural Network Population

	Related Work
	Literature Review
	Arthur Samuel's Checkers Player
	Chinook
	IAGO
	BILL
	Logistello
	Anaconda
	Moriarty and Miikkulainen

	This Project in Context

	Design
	Representing a Game of Othello
	Game Framework
	The Othello Board
	The Player
	Moves
	Evaluation Functions

	Artificial Neural Network
	Activation Functions
	Design
	A Good Player?

	The Evolution Process
	Ranking System
	Mutation Algorithm
	Benchmarking

	Game Tree Expansion

	Implementation
	Programming Language
	Class Overview
	Othello.java
	OthelloPlayer.java
	OthelloPlayerComputer.java
	OthelloPlayerHuman.java
	EvaluationFunction.java
	GreedyEvaluation.java
	RandomEvaluation.java
	NNEvaluation.java
	OthelloBoard.java
	OthelloGameTree.java and GTNode.java

	Timekeeping and General Comments
	Testing
	Problems and their Solutions

	Results

	Evaluation
	Conclusions
	Improvements and Possible Extensions

	Bibliography

